Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(11)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512748

RESUMO

Embryonic development is particularly vulnerable to stress and DNA damage, as mutations can accumulate through cell proliferation in a wide number of cells and organs. However, the biological effects of chronic exposure to ionising radiation (IR) at low and moderate dose rates (< 6 mGy/h) remain largely controversial, raising concerns for environmental protection. The present study focuses on the molecular effects of IR (0.005 to 50 mGy/h) on zebrafish embryos at the gastrula stage (6 hpf), at both the transcriptomics and epigenetics levels. Our results show that exposure to IR modifies the expression of genes involved in mitochondrial activity from 0.5 to 50 mGy/h. In addition, important developmental pathways, namely, the Notch, retinoic acid, BMP and Wnt signalling pathways, were altered at 5 and 50 mGy/h. Transcriptional changes of genes involved in the morphogenesis of the ectoderm and mesoderm were detected at all dose rates, but were prominent from 0.5 to 50 mGy/h. At the epigenetic level, exposure to IR induced a hypomethylation of DNA in the promoter of genes that colocalised with both H3K27me3 and H3Kme4 histone marks and correlated with changes in transcriptional activity. Finally, pathway enrichment analysis demonstrated that the DNA methylation changes occurred in the promoter of important developmental genes, including morphogenesis of the ectoderm and mesoderm. Together, these results show that the transcriptional program regulating morphogenesis in gastrulating embryos was modified at dose rates greater than or equal to 0.5 mGy/h, which might predict potential neurogenesis and somitogenesis defects observed at similar dose rates later in development.


Assuntos
Metilação de DNA/efeitos da radiação , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Morfogênese/genética , Organogênese/genética , Regiões Promotoras Genéticas , Radiação Ionizante , Ativação Transcricional/efeitos da radiação , Peixe-Zebra/genética , Animais , Biologia Computacional/métodos , Ectoderma/embriologia , Ectoderma/metabolismo , Ectoderma/efeitos da radiação , Perfilação da Expressão Gênica , Mesoderma/embriologia , Mesoderma/metabolismo , Mesoderma/efeitos da radiação , Transcriptoma , Peixe-Zebra/embriologia
2.
Aquat Toxicol ; 219: 105384, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31869577

RESUMO

Tritium (3H), a radioactive isotope of hydrogen, is ubiquitously present in the environment. In a previous study, we highlighted a mis-regulation of genes involved in muscle contraction, eye transparency and response to DNA damages after exposure of zebrafish embryo-larvae from 3 hpf to 96 hpf at 0.4 and 4 mGy/h of tritiated water (HTO). The present study aimed to link this gene mis-regulation to responses observed at higher biological levels. Analyses on spontaneous tail movement, locomotor activity and heart rate were performed. Histological sections of eyes were made to evaluate the impact of HTO on eye transparency and whole embryo immunostainings were realized to assess DNA double strand breaks repair using gamma-H2AX foci. We found a decrease of basal velocity as well as a decrease of response in 96 hpf larvae exposed at 0.4 mGy/h after a tactile stimulus as compared to controls. Histological sections of larvae eyes performed after the exposure to 4 mGy/h did not show obvious differences in lens transparency or retinal development between contaminated and control organisms. Gamma-H2AX foci detection revealed no differences in the number of foci between contaminated organisms and controls, for both dose rates. Overall, results highlighted more detrimental effects of HTO exposure on locomotor behavior in 96 hpf larvae exposed at the lowest dose rate. Those results could be linked to mis-regulation of genes involved in muscle contraction found in a previous study at the same dose rate. It appears that not all effects found at the molecular scale were confirmed using higher biological scales. These results could be due to a delay between gene expression modulation and the onset of physiological disruption or homeostatic mechanisms to deal with tritium effects. However, crossing data from different scales highlighted new pathways to explore, i.e. neurotoxic pathways, for better understanding HTO effects on organisms.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Larva/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Trítio/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/crescimento & desenvolvimento , Animais , Dano ao DNA , Olho/efeitos dos fármacos , Olho/crescimento & desenvolvimento , Olho/patologia , Larva/genética , Peixe-Zebra/genética
3.
Sci Rep ; 9(1): 20241, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882844

RESUMO

Contamination of the environment after the Chernobyl and Fukushima Daiichi nuclear power plant (NPP) disasters led to the exposure of a large number of humans and wild animals to radioactive substances. However, the sub-lethal consequences induced by these absorbed radiological doses remain understudied and the long-term biological impacts largely unknown. We assessed the biological effects of chronic exposure to ionizing radiation (IR) on embryonic development by exposing zebrafish embryo from fertilization and up to 120 hours post-fertilization (hpf) at dose rates of 0.5 mGy/h, 5 mGy/h and 50 mGy/h, thereby encompassing the field of low dose rates defined at 6 mGy/h. Chronic exposure to IR altered larval behaviour in a light-dark locomotor test and affected cardiac activity at a dose rate as low as 0.5 mGy/h. The multi-omics analysis of transcriptome, proteome and transcription factor binding sites in the promoters of the deregulated genes, collectively points towards perturbations of neurogenesis, muscle development, and retinoic acid (RA) signaling after chronic exposure to IR. Whole-mount RNA in situ hybridization confirmed the impaired expression of the transcription factors her4.4 in the central nervous system and myogenin in the developing muscles of exposed embryos. At the organ level, the assessment of muscle histology by transmission electron microscopy (TEM) demonstrated myofibers disruption and altered neuromuscular junctions in exposed larvae at 5 mGy/h and 50 mGy/h. The integration of these multi-level data demonstrates that chronic exposure to low dose rates of IR has an impact on neuronal and muscle progenitor cells, that could lead to motility defects in free swimming larvae at 120 hpf. The mechanistic understanding of these effects allows us to propose a model where deregulation of RA signaling by chronic exposure to IR has pleiotropic effects on neurogenesis and muscle development.


Assuntos
Desenvolvimento Embrionário/efeitos da radiação , Desenvolvimento Muscular/efeitos da radiação , Músculos/efeitos da radiação , Sistema Nervoso/efeitos da radiação , Radiação Ionizante , Biologia de Sistemas/métodos , Animais , Antineoplásicos/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Larva/efeitos dos fármacos , Larva/genética , Larva/efeitos da radiação , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/genética , Músculos/efeitos dos fármacos , Músculos/embriologia , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/embriologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/efeitos da radiação , Tretinoína/farmacologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Environ Toxicol Chem ; 38(11): 2556-2567, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31393625

RESUMO

Multigenerational studies have become of great interest in ecotoxicology since the consequence of parental exposure to contaminants on offspring generations was established in situ or in laboratory conditions. The present study mainly examined the chronic effects of external Cs-137 gamma irradiation exposure at 4 dose rates (control, 0.5, 5, and 50 mGy h-1 ) on adult zebrafish (F0) exposed for 10 d and their progeny (F1) exposed or unexposed for 4 to 5 d. The main endpoints investigated included parental reproductive performance, embryo-larval survival, DNA alterations, and reactive oxygen species (ROS) production in F0 and F1. No effects on reproductive success, fecundity, or egg fertilization rate were observed. However, drastic effects were observed on F1 exposed to 50 mGy h-1 , resulting in a mortality rate of 100%. The drastic effects were also observed when the progeny was not irradiated. It was demonstrated that the sensitivity of the embryos was mainly attributable to parental irradiation. Moreover, these drastic effects induced by adult irradiation disappeared over time when 10 d-irradiated adults were placed in a nonirradiated condition. Alterations in larval DNA were observed for the 3 dose rates, and an increase of ROS production was also shown for the 2 lowest dose rates. The present study improves our understanding of the consequences of parental exposure conditions to the progeny. Furthermore, it provides an incentive to take transmitted generational effects into account in ecological risk assessments. Environ Toxicol Chem 2019;38:2556-2567. © 2019 SETAC.


Assuntos
Raios gama/efeitos adversos , Reprodução/efeitos da radiação , Peixe-Zebra/fisiologia , Animais , Radioisótopos de Césio , Dano ao DNA , Relação Dose-Resposta à Radiação , Ecotoxicologia , Feminino , Fertilidade/efeitos da radiação , Larva/fisiologia , Larva/efeitos da radiação , Masculino , Mutagênicos/toxicidade , Estresse Oxidativo/efeitos da radiação , Exposição à Radiação , Análise de Sobrevida , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/genética
5.
PLoS One ; 12(5): e0177932, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28531178

RESUMO

Uranium is an actinide naturally found in the environment. Anthropogenic activities lead to the release of increasing amounts of uranium and depleted uranium (DU) in the environment, posing potential risks to aquatic organisms due to radiological and chemical toxicity of this radionucleide. Although environmental contaminations with high levels of uranium have already been observed, chronic exposures of non-human species to levels close to the environmental quality standards remain scarcely characterized. The present study focused on the identification of the molecular pathways impacted by a chronic exposure of zebrafish to 20 µg/L of DU during 10 days. The transcriptomic effects were evaluated by the use of the mRNAseq analysis in three organs of adult zebrafish, the brain the testis and the ovaries, and two developmental stages of the adult fish progeny, two-cells embryo and four-days larvae. The results highlight generic effects on the cell adhesion process, but also specific transcriptomic responses depending on the organ or the developmental stage investigated. The analysis of the transgenerational effects of DU-exposure on the four-day zebrafish larvae demonstrate an induction of genes involved in oxidative response (cat, mpx, sod1 and sod2), a decrease of expression of the two hatching enzymes (he1a and he1b), the deregulation of the expression of gene coding for the ATPase complex and the induction of cellular stress. Electron microscopy analysis of skeletal muscles on the four-days larvae highlights significant histological impacts on the ultrastructure of both the mitochondria and the myofibres. In addition, the comparison with the transcriptomic data obtained for the acetylcholine esterase mutant reveals the induction of protein-chaperons in the skeletal muscles of the progeny of fish chronically exposed to DU, pointing towards long lasting effects of this chemical in the muscles. The results presented in this study support the hypothesis that a chronic parental exposure to an environmentally relevant concentration of DU could impair the progeny development with significant effects observed both at the molecular level and on the histological ultrastructure of organs. This study provides a comprehensive transcriptomic dataset useful for ecotoxicological studies on other fish species at the molecular level. It also provides a key DU responsive gene, egr1, which may be a candidate biomarker for monitoring aquatic pollution by heavy metals.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Urânio/toxicidade , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/embriologia , Músculo Esquelético/ultraestrutura , Ovário/efeitos dos fármacos , Ovário/embriologia , Testículo/efeitos dos fármacos , Testículo/embriologia , Poluentes Radioativos da Água/toxicidade , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...