Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 65(6): 975-985, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38147500

RESUMO

DesC1 and DesC2, which are fatty acid desaturases found in cyanobacteria, are responsible for introducing a double bond at the Δ9 position of fatty-acyl chains, which are subsequently esterified to the sn-1 and sn-2 positions of the glycerol moiety, respectively. However, since the discovery of these two desaturases in the Antarctic cyanobacterium Nostoc sp. SO-36, no further research has been reported. This study presents a comprehensive characterization of DesC1 and DesC2 through targeted mutagenesis and transformation using two cyanobacteria strains: Anabaena sp. PCC 7120, comprising both desaturases, and Synechocystis sp. PCC 6803, containing a single Δ9 desaturase (hereafter referred to as DesCs) sharing similarity with DesC1 in amino acid sequence. The results suggested that both DesC1 and DesC2 were essential in Anabaena sp. PCC 7120 and that DesC1, but not DesC2, complemented DesCs in Synechocystis sp. PCC 6803. In addition, DesC2 from Anabaena sp. PCC 7120 desaturated fatty acids esterified to the sn-2 position of the glycerol moiety in Synechocystis sp. PCC 6803.


Assuntos
Anabaena , Proteínas de Bactérias , Ácidos Graxos Dessaturases , Synechocystis , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Synechocystis/enzimologia , Synechocystis/genética , Anabaena/enzimologia , Anabaena/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ácidos Graxos/metabolismo , Cianobactérias/enzimologia , Cianobactérias/genética , Sequência de Aminoácidos
2.
Photosynth Res ; 155(1): 107-125, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36302911

RESUMO

We provide here an overview of the remarkable life and outstanding research of David (Dave) Charles Fork (March 4, 1929-December 13, 2021) in oxygenic photosynthesis. In the words of the late Jack Edgar Myers, he was a top 'photosynthetiker'. His research dealt with novel findings on light absorption, excitation energy distribution, and redistribution among the two photosystems, electron transfer, and their relation to dynamic membrane change as affected by environmental changes, especially temperature. David was an attentive listener and a creative designer of experiments and instruments, and he was also great fun to work with. He is remembered here by his family, coworkers, and friends from around the world including Australia, France, Germany, Japan, Sweden, Israel, and USA.


Assuntos
Oxigênio , Fotossíntese , Humanos , Austrália , Transporte de Elétrons , Alemanha
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(9): 939-947, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29793056

RESUMO

Analysis of fatty acids from the cyanobacterium Cyanothece sp. PCC 8801 revealed that this species contained high levels of myristic acid (14:0) and linoleic acid in its glycerolipids, with minor contributions from palmitic acid (16:0), stearic acid, and oleic acid. The level of 14:0 relative to total fatty acids reached nearly 50%. This 14:0 fatty acid was esterified primarily to the sn-2 position of the glycerol moiety of glycerolipids. This characteristic is unique because, in most of the cyanobacterial strains, the sn-2 position is esterified exclusively with C16 fatty acids, generally 16:0. Transformation of Synechocystis sp. PCC 6803 with the PCC8801_1274 gene for lysophosphatidic acid acyltransferase (1-acyl-sn-glycerol-3-phosphate acyltransferase) from Cyanothece sp. PCC 8801 increased the level of 14:0 from 2% to 17% in total lipids and the increase in the 14:0 content was observed in all lipid classes. These findings suggest that the high content of 14:0 in Cyanothece sp. PCC 8801 might be a result of the high specificity of this acyltransferase toward the 14:0-acyl-carrier protein.


Assuntos
Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cyanothece/química , Ácido Mirístico/metabolismo , Synechocystis/química , Aciltransferases/genética , Proteínas de Bactérias/genética , Cyanothece/enzimologia , Cyanothece/genética , Expressão Gênica , Glicolipídeos/química , Glicolipídeos/metabolismo , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Metabolismo dos Lipídeos , Ácido Mirístico/química , Ácido Oleico/química , Ácido Oleico/metabolismo , Ácido Palmítico/química , Ácido Palmítico/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Especificidade da Espécie , Ácidos Esteáricos/química , Ácidos Esteáricos/metabolismo , Especificidade por Substrato , Synechocystis/enzimologia , Synechocystis/genética , Transformação Bacteriana , Transgenes
4.
Plant Cell Environ ; 41(2): 285-299, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29210214

RESUMO

Repair of photosystem II (PSII) during photoinhibition involves replacement of photodamaged D1 protein by newly synthesized D1 protein. In this review, we summarize evidence for the indispensability of ATP in the degradation and synthesis of D1 during the repair of PSII. Synthesis of one molecule of the D1 protein consumes more than 1,300 molecules of ATP equivalents. The degradation of photodamaged D1 by FtsH protease also consumes approximately 240 molecules of ATP. In addition, ATP is required for several other aspects of the repair of PSII, such as transcription of psbA genes. These requirements for ATP during the repair of PSII have been demonstrated by experiments showing that the synthesis of D1 and the repair of PSII are interrupted by inhibitors of ATP synthase and uncouplers of ATP synthesis, as well as by mutation of components of ATP synthase. We discuss the contribution of cyclic electron transport around photosystem I to the repair of PSII. Furthermore, we introduce new terms relevant to the regulation of the PSII repair, namely, "ATP-dependent regulation" and "redox-dependent regulation," and we discuss the possible contribution of the ATP-dependent regulation of PSII repair under environmental stress.


Assuntos
Trifosfato de Adenosina/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Transporte de Elétrons , Luz , Complexo de Proteína do Fotossistema II/efeitos da radiação , Plantas/metabolismo
5.
Photosynth Res ; 122(3): 235-60, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25193504

RESUMO

Prasanna K. Mohanty, a great scientist, a great teacher and above all a great human being, left us more than a year ago (on March 9, 2013). He was a pioneer in the field of photosynthesis research; his contributions are many and wide-ranging. In the words of Jack Myers, he would be a "photosynthetiker" par excellence. He remained deeply engaged with research almost to the end of his life; we believe that generations of researchers still to come will benefit from his thorough and enormous work. We present here his life and some of his contributions to the field of Photosynthesis Research. The response to this tribute was overwhelming and we have included most of the tributes, which we received from all over the world. Prasanna Mohanty was a pioneer in the field of "Light Regulation of Photosynthesis", a loving and dedicated teacher-unpretentious, idealistic, and an honest human being.


Assuntos
Botânica/história , Fotossíntese , História do Século XX , História do Século XXI
6.
Appl Microbiol Biotechnol ; 98(21): 8777-96, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25139449

RESUMO

When photosynthetic organisms are exposed to abiotic stress, their photosynthetic activity is significantly depressed. In particular, photosystem II (PSII) in the photosynthetic machinery is readily inactivated under strong light and this phenomenon is referred to as photoinhibition of PSII. Other types of abiotic stress act synergistically with light stress to accelerate photoinhibition. Recent studies of photoinhibition have revealed that light stress damages PSII directly, whereas other abiotic stresses act exclusively to inhibit the repair of PSII after light-induced damage (photodamage). Such inhibition of repair is associated with suppression, by reactive oxygen species (ROS), of the synthesis of proteins de novo and, in particular, of the D1 protein, and also with the reduced efficiency of repair under stress conditions. Gene-technological improvements in the tolerance of photosynthetic organisms to various abiotic stresses have been achieved via protection of the repair system from ROS and, also, by enhancing the efficiency of repair via facilitation of the turnover of the D1 protein in PSII. In this review, we summarize the current status of research on photoinhibition as it relates to the effects of abiotic stress and we discuss successful strategies that enhance the activity of the repair machinery. In addition, we propose several potential methods for activating the repair system by gene-technological methods.


Assuntos
Luz , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Estresse Fisiológico , Espécies Reativas de Oxigênio/metabolismo
7.
Plasmid ; 72: 18-28, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24680933

RESUMO

Lycopene is an effective antioxidant proposed as a possible treatment for some cancers and other degenerative human conditions. This study aims at generation of a yeast strain (Saccharomyces cerevisiae) of efficient productivity of lycopene by overexpressing synthetic genes derived from crtE, crtB and crtI genes of Erwinia uredovora. These synthetic genes were constructed in accordance with the preferred codon usage in S. cerevisiae but with no changes in amino acid sequences of the gene products. S. cerevisiae cells were transformed with these synthetic crt genes, whose expression was regulated by the ADH2 promoter, which is de-repressed upon glucose depletion. The RT-PCR and Western blotting analyses indicated that the synthetic crt genes were efficiently transcribed and translated in crt-transformed S. cerevisiae cells. The highest level of lycopene in one of the transformed lines was 3.3mglycopene/g dry cell weight, which is higher than the previously reported levels of lycopene in other microorganisms transformed with the three genes. These results suggest the excellence of using the synthetic crt genes and the ADH2 promoter in generation of recombinant S. cerevisiae that produces a high level of lycopene. The level of ergosterol was reversely correlated to that of lycopene in crt-transformed S. cerevisiae cells, suggesting that two pathways for lycopene and ergosterol syntheses compete for the use of farnesyl diphosphate.


Assuntos
Carotenoides/biossíntese , Farnesiltranstransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Oxirredutases/genética , Saccharomyces cerevisiae/genética , Clonagem Molecular , Ergosterol/biossíntese , Erwinia/enzimologia , Erwinia/genética , Farnesiltranstransferase/biossíntese , Expressão Gênica , Genes Bacterianos , Geranil-Geranildifosfato Geranil-Geraniltransferase/biossíntese , Licopeno , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo , Oxirredutases/biossíntese , Plasmídeos , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Transformação Genética
8.
Biochim Biophys Acta ; 1817(8): 1127-33, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22387427

RESUMO

Photoinhibition of photosystem II (PSII) occurs when the rate of light-induced inactivation (photodamage) of PSII exceeds the rate of repair of the photodamaged PSII. For the quantitative analysis of the mechanism of photoinhibition of PSII, it is essential to monitor the rate of photodamage and the rate of repair separately and, also, to examine the respective effects of various perturbations on the two processes. This strategy has allowed the re-evaluation of the results of previous studies of photoinhibition and has provided insight into the roles of factors and mechanisms that protect PSII from photoinhibition, such as catalases and peroxidases, which are efficient scavengers of H(2)O(2); α-tocopherol, which is an efficient scavenger of singlet oxygen; non-photochemical quenching, which dissipates excess light energy that has been absorbed by PSII; and the cyclic and non-cyclic transport of electrons. Early studies of photoinhibition suggested that all of these factors and mechanisms protect PSII against photodamage. However, re-evaluation by the strategy mentioned above has indicated that, rather than protecting PSII from photodamage, they stimulate protein synthesis, with resultant repair of PSII and mitigation of photoinhibition. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Assuntos
Catalase/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , alfa-Tocoferol/farmacologia , Transporte de Elétrons , Luz , Peroxidases/fisiologia , Biossíntese de Proteínas , Espécies Reativas de Oxigênio/metabolismo
9.
J Proteome Res ; 11(1): 502-14, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22050404

RESUMO

Cyanobacteria are the only prokaryotes possessing plasma, thylakoid, and outer membranes. The plasma membrane of a cyanobacterial cell is essential for the biogenesis of cyanobacterial photosystems and serves as a barrier against environmental stress. We previously identified dozens of salt-responsive proteins in the plasma membrane of Synechocystis sp. PCC 6803. Five histidine kinases (Hiks) including Hik33 were also proposed to be involved in the perception of salt stress in Synechocystis. In this study, we analyzed proteomic profiles of the plasma membrane from a hik33-knockout mutant (ΔHik33) under normal and salt-stress conditions. Using 2D-DIGE followed by mass spectrometry analysis, we identified 26 differentially expressed proteins in ΔHik33 mutant cells. Major changes, due to the Hik33 mutation, included the substrate-binding proteins of ABC transporters, such as GgtB and FutA1, regulatory proteins including MorR and Rre13, as well as several hypothetical proteins. Under salt-stress conditions, the Hik33 mutation reduced levels of 7 additional proteins, such as NrtA, nitrate/sulfonate/bicarbonate-binding protein and LexA, and enhanced levels of 9 additional proteins including SphX. These observations suggest a substantial rearrangement in the plasma membrane proteome of Synechocystis due to the loss of hik33. Furthermore, a comprehensive molecular network was revealed in ΔHik33 mutant coping with salt stress.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Quinases/genética , Proteoma/metabolismo , Estresse Fisiológico , Synechocystis/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Histidina Quinase , Proteínas de Membrana/química , Proteínas de Membrana/genética , Fragmentos de Peptídeos/química , Mapeamento de Peptídeos , Proteoma/química , Proteoma/genética , Proteômica , Cloreto de Sódio/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Synechocystis/genética , Synechocystis/metabolismo , Eletroforese em Gel Diferencial Bidimensional
10.
Plant Cell Environ ; 34(11): 1931-43, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21711358

RESUMO

Tomato (Lycopersicon esculentum cv. 'Moneymaker') was transformed with a codA gene, from Arthrobacter globiformis, for choline oxidase that had been modified to allow targeting to both chloroplasts and the cytosol. Glycinebetaine (GB) accumulated in seeds of transformed plants up to 1 µmol g(-1) dry weight (DW), while no detectable GB was found in wild-type (WT) seeds. The codA-transgenic seeds germinated faster and at higher frequency than WT seeds with high temperature treatment. After heat stress, levels of expression of a mitochondrial small heat-shock protein (MT-sHSP), heat-shock protein 70 (HSP70) and heat-shock cognate 70 (HSC70) were higher in transgenic seeds than in WT seeds during heat stress, and the accumulation of HSP70 was more prominent in codA-transgenic seeds than in WT seeds. Addition of GB to the germination medium or imbibition of seeds in a solution of GB enhanced the tolerance of WT seeds to high temperatures. WT seeds treated with exogenous GB also expressed heat-shock genes at elevated levels and accumulated more HSP70 than controls. Our results suggest that GB, either applied exogenously or accumulated in vivo in codA-transgenic seeds, enhanced the expression of heat-shock genes in and improved the tolerance to high temperature of tomato seeds during germination.


Assuntos
Adaptação Fisiológica , Betaína/metabolismo , Germinação/fisiologia , Temperatura Alta , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Arthrobacter/enzimologia , Betaína/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Sementes/efeitos dos fármacos , Sementes/genética , Transformação Genética/efeitos dos fármacos , Transgenes/genética
11.
DNA Res ; 18(3): 137-51, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21551175

RESUMO

Serine/threonine protein kinases (STPKs) are the major participants in intracellular signal transduction in eukaryotes, such as yeasts, fungi, plants, and animals. Genome sequences indicate that these kinases are also present in prokaryotes, such as cyanobacteria. However, their roles in signal transduction in prokaryotes remain poorly understood. We have attempted to identify the roles of STPKs in response to heat stress in the prokaryotic cyanobacterium Synechocystis sp. PCC 6803, which has 12 genes for STPKs. Each gene was individually inactivated to generate a gene-knockout library of STPKs. We applied in vitro Ser/Thr protein phosphorylation and phosphoproteomics and identified the methionyl-tRNA synthetase, large subunit of RuBisCO, 6-phosphogluconate dehydrogenase, translation elongation factor Tu, heat-shock protein GrpE, and small chaperonin GroES as the putative targets for Ser/Thr phosphorylation. The expressed and purified GroES was used as an external substrate to screen the protein extracts of the individual mutants for their Ser/Thr kinase activities. The mutants that lack one of the three protein kinases, SpkC, SpkF, and SpkK, were unable to phosphorylate GroES in vitro, suggesting possible interactions between them towards their substrate. Complementation of the mutated SpkC, SpkF, and SpkK leads to the restoration of the ability of cells to phosphorylate the GroES. This suggests that these three STPKs are organized in a sequential order or a cascade and they work one after another to finally phosphorylate the GroES.


Assuntos
Chaperonina 10/metabolismo , Cianobactérias/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Família Multigênica , Mutação , Fosforilação , Especificidade por Substrato
12.
J Plant Physiol ; 168(11): 1286-94, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21342716

RESUMO

Genetically engineered tomato (Lycopersicon esculentum) with the ability to synthesize glycinebetaine was generated by introducing the codA gene encoding choline oxidase from Arthrobacter globiformis. Integration of the codA gene in transgenic tomato plants was verified by PCR analysis and DNA blot hybridization. Transgenic expression of gene was verified by RT-PCR analysis and RNA blot hybridization. The codA-transgenic plants showed higher tolerance to salt stress during seed germination, and subsequent growth of young seedlings than wild-type plants. The codA transgene enhanced the salt tolerance of whole plants and leaves. Mature leaves of codA-transgenic plants revealed higher levels of relative water content, chlorophyll content, and proline content than those of wild-type plants under salt and water stresses. Results from the current study suggest that the expression of the codA gene in transgenic tomato plants induces the synthesis of glycinebetaine and improves the tolerance of plants to salt and water stresses.


Assuntos
Adaptação Fisiológica , Secas , Plantas Tolerantes a Sal/fisiologia , Solanum lycopersicum/genética , Estresse Fisiológico , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Arthrobacter/genética , Betaína/metabolismo , Clorofila/análise , Regulação da Expressão Gênica de Plantas , Genes Bacterianos , Germinação , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/fisiologia , Prolina/análise , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Cloreto de Sódio/metabolismo , Transgenes , Água/metabolismo
13.
Physiol Plant ; 142(1): 35-46, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21320129

RESUMO

Photoinhibition of photosystem II (PSII) occurs when the rate of photodamage to PSII exceeds the rate of the repair of photodamaged PSII. Recent examination of photoinhibition by separate determinations of photodamage and repair has revealed that the rate of photodamage to PSII is directly proportional to the intensity of incident light and that the repair of PSII is particularly sensitive to the inactivation by reactive oxygen species (ROS). The ROS-induced inactivation of repair is attributable to the suppression of the synthesis de novo of proteins, such as the D1 protein, that are required for the repair of PSII at the level of translational elongation. Furthermore, molecular analysis has revealed that the ROS-induced suppression of protein synthesis is associated with the specific inactivation of elongation factor G via the formation of an intramolecular disulfide bond. Impairment of various mechanisms that protect PSII against photoinhibition, including photorespiration, thermal dissipation of excitation energy, and the cyclic transport of electrons, decreases the rate of repair of PSII via the suppression of protein synthesis. In this review, we present a newly established model of the mechanism and the physiological significance of repair in the regulation of the photoinhibition of PSII.


Assuntos
Luz , Complexo de Proteína do Fotossistema II/metabolismo , Biossíntese de Proteínas/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Fator G para Elongação de Peptídeos/metabolismo , Fotossíntese/efeitos da radiação
14.
Plant Cell Environ ; 34(1): 1-20, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20946588

RESUMO

Various compatible solutes enable plants to tolerate abiotic stress, and glycinebetaine (GB) is one of the most-studied among such solutes. Early research on GB focused on the maintenance of cellular osmotic potential in plant cells. Subsequent genetically engineered synthesis of GB-biosynthetic enzymes and studies of transgenic plants demonstrated that accumulation of GB increases tolerance of plants to various abiotic stresses at all stages of their life cycle. Such GB-accumulating plants exhibit various advantageous traits, such as enlarged fruits and flowers and/or increased seed number under non-stress conditions. However, levels of GB in transgenic GB-accumulating plants are relatively low being, generally, in the millimolar range. Nonetheless, these low levels of GB confer considerable tolerance to various stresses, without necessarily contributing significantly to cellular osmotic potential. Moreover, low levels of GB, applied exogenously or generated by transgenes for GB biosynthesis, can induce the expression of certain stress-responsive genes, including those for enzymes that scavenge reactive oxygen species. Thus, transgenic approaches that increase tolerance to abiotic stress have enhanced our understanding of mechanisms that protect plants against such stress.


Assuntos
Adaptação Fisiológica , Betaína/metabolismo , Plantas/efeitos dos fármacos , Plantas/metabolismo , Estresse Fisiológico , Betaína/análise , Betaína/farmacologia , Biotecnologia , Regulação da Expressão Gênica de Plantas , Genes Bacterianos , Genes de Plantas , Engenharia Genética/métodos , Fotossíntese/efeitos dos fármacos , Plantas/química , Plantas/enzimologia , Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/efeitos adversos , Reprodução/efeitos dos fármacos , Transgenes/fisiologia
15.
Biochim Biophys Acta ; 1807(2): 236-41, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21074511

RESUMO

α-Tocopherol is a lipophilic antioxidant that is an efficient scavenger of singlet oxygen. We investigated the role of α-tocopherol in the protection of photosystem II (PSII) from photoinhibition using a mutant of the cyanobacterium Synechocystis sp. PCC 6803 that is deficient in the biosynthesis of α-tocopherol. The activity of PSII in mutant cells was more sensitive to inactivation by strong light than that in wild-type cells, indicating that lack of α-tocopherol enhances the extent of photoinhibition. However, the rate of photodamage to PSII, as measured in the presence of chloramphenicol, which blocks the repair of PSII, did not differ between the two lines of cells. By contrast, the repair of PSII from photodamage was suppressed in mutant cells. Addition of α-tocopherol to cultures of mutant cells returned the extent of photoinhibition to that in wild-type cells, without any effect on photodamage. The synthesis de novo of various proteins, including the D1 protein that plays a central role in the repair of PSII, was suppressed in mutant cells under strong light. These observations suggest that α-tocopherol promotes the repair of photodamaged PSII by protecting the synthesis de novo of the proteins that are required for recovery from inhibition by singlet oxygen.


Assuntos
Antioxidantes/metabolismo , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , alfa-Tocoferol/metabolismo , Oxigênio Singlete/metabolismo , Synechocystis/genética
16.
PLoS One ; 5(5): e10511, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20463904

RESUMO

BACKGROUND: Photosystem II (PSII) is the most thermally sensitive component of photosynthesis. Thermal acclimation of this complex activity is likely to be critically important to the ability of photosynthetic organisms to tolerate temperature changes in the environment. METHODOLOGY/FINDINGS: We have analysed gene expression using whole-genome microarrays and monitored alterations in physiology during acclimation of PSII to elevated growth temperature in Synechocystis sp. PCC 6803. PSII acclimation is complete within 480 minutes of exposure to elevated temperature and is associated with a highly dynamic transcriptional response. 176 genes were identified and classified into seven distinct response profile groups. Response profiles suggest the existence of an early transient phase and a sustained phase to the acclimation response. The early phase was characterised by induction of general stress response genes, including heat shock proteins, which are likely to influence PSII thermal stability. The sustained phase consisted of acclimation-specific alterations that are involved in other cellular processes. Sustained responses included genes involved in phycobillisome structure and modification, photosynthesis, respiration, lipid metabolism and motility. Approximately 60% of genes with sustained altered expression levels have no known function. The potential role of differentially expressed genes in thermotolerance and acclimation is discussed. We have characterised the acclimation physiology of selected gene 'knockouts' to elucidate possible gene function in the response. CONCLUSIONS/SIGNIFICANCE: All mutants show lower PSII rates under normal growth conditions. Basal PSII thermotolerance was affected by mutations in clpB1, cpcC2, hspA, htpG and slr1674. Final PSII thermotolerance was affected by mutations in cpcC2, hik34, hspA and hypA1, suggesting that these gene products play roles in long-term thermal acclimation of PSII.


Assuntos
Aclimatação , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Temperatura , Aclimatação/genética , Técnicas de Silenciamento de Genes , Genes Bacterianos , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento , Transcrição Gênica
17.
Microbiology (Reading) ; 156(Pt 2): 442-451, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19926653

RESUMO

The crhR gene for RNA helicase, CrhR, was one of the most highly induced genes when the cyanobacterium Synechocystis sp. PCC 6803 was exposed to a downward shift in ambient temperature. Although CrhR may be involved in the acclimatization of cyanobacterial cells to low-temperature environments, its functional role during the acclimatization is not known. In the present study, we mutated the crhR gene by replacement with a spectinomycin-resistance gene cassette. The resultant DeltacrhR mutant exhibited a phenotype of slow growth at low temperatures. DNA microarray analysis of the genome-wide expression of genes, and Northern and Western blotting analyses indicated that mutation of the crhR gene repressed the low-temperature-inducible expression of heat-shock genes groEL1 and groEL2, at the transcript and protein levels. The kinetics of the groESL co-transcript and the groEL2 transcript after addition of rifampicin suggested that CrhR stabilized these transcripts at an early phase, namely 5-60 min, during acclimatization to low temperatures, and enhanced the transcription of these genes at a later time, namely 3-5 h. Our results suggest that CrhR regulates the low-temperature-inducible expression of these heat-shock proteins, which, in turn, may be essential for acclimatization of Synechocystis cells to low temperatures.


Assuntos
Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/genética , RNA Helicases/metabolismo , Synechocystis/enzimologia , Aclimatação/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Northern Blotting , Chaperonina 10/genética , Chaperonina 60/genética , Temperatura Baixa , Teste de Complementação Genética , Proteínas de Choque Térmico/biossíntese , Resposta ao Choque Térmico/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , RNA Helicases/genética , Synechocystis/fisiologia
18.
Mol Biosyst ; 5(12): 1904-12, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19763333

RESUMO

Changes in the supercoiling of genomic DNA play an important role in the regulation of gene expression. We compared the genome-wide expression of genes in cells of the cyanobacterium Synechocystis sp. PCC 6803 when they were subjected to salt, cold, and heat stress, in the presence of novobiocin, an inhibitor of DNA gyrase, and in its absence. The analysis revealed that the expression of a large number of stress-inducible genes depends on the extent of genomic DNA supercoiling. The function of the two-component regulatory systems, which are known as sensors and transducers of salt, cold, and heat stress, depends on, and might be controlled by, the degree of supercoiling of the genomic DNA. These results suggest that stress-induced changes in superhelicity of genomic DNA provide an important permissive background for successful acclimatization of cyanobacterial cells to stress conditions.


Assuntos
DNA Super-Helicoidal/fisiologia , Regulação Bacteriana da Expressão Gênica , Estresse Fisiológico/fisiologia , Synechocystis/fisiologia , Northern Blotting , Análise por Conglomerados , DNA Super-Helicoidal/genética , Inibidores Enzimáticos/farmacologia , Novobiocina/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Cloreto de Sódio/química , Synechocystis/genética , Temperatura
19.
Plant Biotechnol J ; 7(6): 512-26, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19490479

RESUMO

Rice (Oryza sativa L.), a non-accumulator of glycinebetaine (GB), is highly susceptible to abiotic stress. Transgenic rice with chloroplast-targeted choline oxidase encoded by the codA gene from Arthrobacter globiformis has been evaluated for inheritance of transgene up to R5 generation and water-stress tolerance. During seedling, vegetative and reproductive stages, transgenic plants could maintain higher activity of photosystem II and they show better physiological performance, for example, enhanced detoxification of reactive oxygen species compared to wild-type plants under water-stress. Survival rate and agronomic performance of transgenic plants is also better than wild-type following prolonged water-stress. Choline oxidase converts choline into GB and H2O2 in a single step. It is possible that H2O2/GB might activate stress response pathways and prepare transgenic plants to mitigate stress. To check this possibility, microarray-based transcriptome analysis of transgenic rice has been done. It unravelled altered expression of many genes involved in stress responses, signal transduction, gene regulation, hormone signalling and cellular metabolism. Overall, 165 genes show more than two-fold up-regulation at P-value < 0.01 in transgenic rice. Out of these, at least 50 genes are known to be involved in plant stress response. Exogenous application of H2O2 or GB to wild-type plants also induces such genes. Our data show that metabolic engineering for GB is a promising strategy for introducing stress tolerance in crop plants and which could be imparted, in part, by H2O2- and/or GB-induced stress response genes.


Assuntos
Betaína/farmacologia , Desidratação/genética , Perfilação da Expressão Gênica , Oryza/genética , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Arthrobacter/enzimologia , Arthrobacter/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Peróxido de Hidrogênio/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/efeitos dos fármacos , Oryza/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Estresse Fisiológico , Regulação para Cima
20.
Biochim Biophys Acta ; 1791(3): 183-90, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19367764

RESUMO

Long-chain n-3 fatty acids can lower the risk of lifestyle-related diseases, therefore, we introduced a plant fatty acid desaturation3 (FAD3) gene into mammalian cells. The FAD3 cDNA was isolated from the immature seeds of scarlet flax and optimized to human high-frequency codon usage for enhancement of its expression levels in mammalian cells (hFAD3). We introduced the gene into bovine muscle satellite cells, which can be differentiated into multilocular adipocytes in vitro. After hFAD3 transfection, the cells were differentiated into adipocytes and their fatty acid composition was analyzed by gas chromatography. The level of alpha-linolenic acid (18:3n-3) in transfected adipocytes increased about ten-fold compared with non-transfected adipocytes. In addition, the levels of docosapentaenoic acid (DPA, 22:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) in transfected adipocytes were significantly higher than those in non-transfected adipocytes. Moreover, we produced bovine cloned embryos from the hFAD3 cells by somatic cell nuclear transfer. Blastocyst rates of hFAD3 clones were the same as the control clones using the non-transfected cells (21% vs 27%, P > 0.05). hFAD3 transcripts were detected in all of the blastocysts. These results demonstrate the functional expression of a plant hFAD3 in mammalian adipocytes, and normal development of cloned embryos carrying the hFAD3 gene.


Assuntos
Adipócitos/metabolismo , Bovinos/embriologia , Embrião de Mamíferos/metabolismo , Ácidos Graxos Dessaturases/genética , Linho/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Transfecção , Animais , Blastocisto/metabolismo , Células Cultivadas , Cromatografia Gasosa , DNA Complementar , Ácidos Docosa-Hexaenoicos/metabolismo , Técnicas de Cultura Embrionária , Ácidos Graxos Insaturados/metabolismo , Humanos , Masculino , Células Satélites de Músculo Esquelético/metabolismo , Ácido alfa-Linolênico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...