Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 1290, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28465527

RESUMO

Molecular dynamic simulations were performed to determine the elastic constants of carbon dioxide (CO2) and methane (CH4) hydrates at one hundred pressure-temperature data points, respectively. The conditions represent marine sediments and permafrost zones where gas hydrates occur. The shear modulus and Young's modulus of the CO2 hydrate increase anomalously with increasing temperature, whereas those of the CH4 hydrate decrease regularly with increase in temperature. We ascribe this anomaly to the kinetic behavior of the linear CO2 molecule, especially those in the small cages. The cavity space of the cage limits free rotational motion of the CO2 molecule at low temperature. With increase in temperature, the CO2 molecule can rotate easily, and enhance the stability and rigidity of the CO2 hydrate. Our work provides a key database for the elastic properties of gas hydrates, and molecular insights into stability changes of CO2 hydrate from high temperature of ~5 °C to low decomposition temperature of ~-150 °C.

2.
Langmuir ; 33(15): 3892-3899, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28355074

RESUMO

Based on molecular dynamics simulations of eight ions (Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, and Ba2+) on muscovite mica surfaces in water, we demonstrate that experimental data on the muscovite mica surface can be rationalized through a unified picture of adsorption structures including the hydration structure, cation heights from the muscovite surface, and state stability. These simulations enable us to categorize the inner-sphere surface complex into two different species: an inner-sphere surface complex in a ditrigonal cavity (IS1) and that on top of Al (IS2). By considering the presence of the two inner-sphere surface complexes, the experimental finding that the heights of adsorbed cations from the muscovite surface are proportional to the ionic radius for K+ and Cs+ but inversely proportional to the ionic radius for Ca2+ and Ba2+ was explained. We find that Na+, Ca2+, Sr2+, and Ba2+ can form both IS1 and IS2; K+, Rb+, and Cs+ can form only IS1; and Mg2+ can form only IS2. It is suggested that the formation of IS1 and IS2 is governed by the charge density of the ions. Among the eight ions, we also find that the hydration structure for the outer-sphere surface complexes of divalent cations differs from that of the monovalent cations by one adsorbed water molecule (i.e., a water molecule located in a ditrigonal cavity).

3.
Langmuir ; 32(15): 3608-16, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27018633

RESUMO

With the development of atomic force microscopy (AFM), it is now possible to detect the buried liquid-solid interfacial structure in three dimensions at the atomic scale. One of the model surfaces used for AFM is the muscovite surface because it is atomically flat after cleavage along the basal plane. Although it is considered that force profiles obtained by AFM reflect the interfacial structures (e.g., muscovite surface and water structure), the force profiles are not straightforward because of the lack of a quantitative relationship between the force and the interfacial structure. In the present study, molecular dynamics simulations were performed to investigate the relationship between the muscovite-water interfacial structure and the measured AFM force using a capped carbon nanotube (CNT) AFM tip. We provide divided force profiles, where the force contributions from each water layer at the interface are shown. They reveal that the first hydration layer is dominant in the total force from water even after destruction of the layer. Moreover, the lateral structure of the first hydration layer transcribes the muscovite surface structure. It resembles the experimentally resolved surface structure of muscovite in previous AFM studies. The local density profile of water between the tip and the surface provides further insight into the relationship between the water structure and the detected force structure. The detected force structure reflects the basic features of the atomic structure for the local hydration layers. However, details including the peak-peak distance in the force profile (force-distance curve) differ from those in the density profile (density-distance curve) because of disturbance by the tip.

4.
Sci Rep ; 6: 23548, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27009239

RESUMO

It has been reported for a long time that methane hydrate presents strain hardening, whereas the strength of normal ice weakens with increasing strain after an ultimate strength. However, the microscopic origin of these differences is not known. Here, we investigated the mechanical characteristics of methane hydrate and normal ice by compressive deformation test using molecular dynamics simulations. It is shown that methane hydrate exhibits strain hardening only if the hydrate is confined to a certain finite cross-sectional area that is normal to the compression direction. For normal ice, it does not present strain hardening under the same conditions. We show that hydrate guest methane molecules exhibit no long-distance diffusion when confined to a finite-size area. They appear to serve as non-deformable units that prevent hydrate structure failure, and thus are responsible for the strain-hardening phenomenon.

5.
Sci Rep ; 5: 13790, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26337567

RESUMO

It is well known that the close-packed CF3-terminated solid surface is among the most hydrophobic surfaces in nature. Molecular dynamic simulations show that this hydrophobicity can be further enhanced by the atomic-scale roughness. Consequently, the hydrophobic gap width is enlarged to about 0.6 nm for roughened CF3-terminated solid surfaces. In contrast, the hydrophobic gap width does not increase too much for a rough CH3-terminated solid surface. We show that the CF3-terminated surface exists in a microscopic Cassie-Baxter state, whereas the CH3-terminated surface exists as a microscopic Wenzel state. This finding elucidates the underlying mechanism for the different widths of the observed hydrophobic gap. The cage structure of the water molecules (with integrated hydrogen bonds) around CH3 terminal assemblies on the solid surface provides an explanation for the mechanism by which the CH3-terminated surface is less hydrophobic than the CF3-terminated surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...