Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35012037

RESUMO

The predicted growth in plastic demand and the targets for global CO2 emission reductions require a transition to replace fossil-based feedstock for polymers and a transition to close- loop recyclable, and in some cases to, biodegradable polymers. The global crisis in terms of plastic littering will furthermore force a transition towards materials that will not linger in nature but will degrade over time in case they inadvertently end up in nature. Efficient systems for studying polymer (bio)degradation are therefore required. In this research, the Respicond parallel respirometer was applied to polyester degradation studies. Two poly(lactic-co-glycolic acid) copolyesters (PLGA12/88 and PLGA6/94) were tested and shown to mineralise faster than cellulose over 53 days at 25 °C in soil: 37% biodegradation for PLGA12/88, 53% for PLGA6/94, and 30% for cellulose. The corresponding monomers mineralised much faster than the polymers. The methodology presented in this article makes (bio)degradability studies as part of a materials development process economical and, at the same time, time-efficient and of high scientific quality. Additionally, PLGA12/88 and PLGA6/94 were shown to non-enzymatically hydrolyse in water at similar rates, which is relevant for both soil and marine (bio)degradability.

2.
ACS Appl Polym Mater ; 2(7): 2706-2718, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32954354

RESUMO

The combination of the predicted polymer market growth and the emergence of renewable feedstocks creates a fantastic opportunity for sustainable polymers. To replace fossil-based feedstock, there are only three alternative sustainable carbon sources: biomass, CO2, and existing plastics (via mechanical and/or chemical recycling). The ultimate circular feedstock would be CO2: it can be electrochemically reduced to formic acid derivatives that subsequently can be converted into useful monomers such as glycolic acid. This work is part of the European Horizon 2020 project "Ocean" in which the steps from CO2 to glycolic acid are developed. Polyglycolic acid (PGA) and poly(lactide-co-glycolide) (PLGA) copolyesters with high lactic acid (LA) content are well-known. PGA is very difficult to handle due to its high crystallinity. On the other hand, PLGAs with high LA content lack good oxygen and moisture barriers. The aim of this work is to understand the structure-property relationships for the mostly unexplored glycolic acid rich PLGA copolymer series and to assess their suitability as barrier materials. Thus, PLGA copolymers with between 50 and 91 mol % glycolic acid were synthesized and their properties were evaluated. Increased thermal stability was observed with increasing glycolic acid content. Only those containing 87 and 91 mol % glycolic acid were semicrystalline. A crystallization study under non-isothermal conditions revealed that copolymerization reduces the crystallization rate for PLGA compared to polylactic acid (PLA) and PGA. While PGA homopolymer crystallizes completely when cooled at 10 °C·min-1, the copolymers with 9 and 13% lactic acid show almost 10 times slower crystallization, which is a huge advantage vis-à-vis PGA for processing. The kinetics of this process, modeled with the Jeziorny-modified Avrami method, confirmed those observations. Barrier property assessment revealed great potential for these copolymers for application in barrier films. Increasing glycolic acid content in PLGA copolymers enhances the barrier to both oxygen and water vapor. At room temperature and a relative humidity below 70% the PLGA copolymers with high glycolic acid content outperform the barrier properties of polyethylene terephthalate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA