Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 1006897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36524119

RESUMO

Microglia are the main resident immune cells of the nervous system and as such they are involved in multiple roles ranging from tissue homeostasis to response to insults and circuit refinement. While most knowledge about microglia comes from brain studies, some mechanisms have been confirmed for microglia cells in the retina, the light-sensing compartment of the eye responsible for initial processing of visual information. However, several key pieces of this puzzle are still unaccounted for, as the characterization of retinal microglia has long been hindered by the reduced population size within the retina as well as the previous lack of technologies enabling single-cell analyses. Accumulating evidence indicates that the same cell type may harbor a high degree of transcriptional, morphological and functional differences depending on its location within the central nervous system. Thus, studying the roles and signatures adopted specifically by microglia in the retina has become increasingly important. Here, we review the current understanding of retinal microglia cells in physiology and in disease, with particular emphasis on newly discovered mechanisms and future research directions.


Assuntos
Microglia , Retina , Retina/fisiologia , Neuroglia , Encéfalo
2.
Life Sci Alliance ; 4(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34183443

RESUMO

Age-related macular degeneration (AMD) is the most common cause of blindness among the elderly and can be classified either as dry or as neovascular (or wet). Neovascular AMD is characterized by a strong immune response and the inadequate release of cytokines triggering angiogenesis and induction of photoreceptor death. The pathomechanisms of AMD are only partly understood. Here, we identify the endolysosomal two-pore cation channel TPC2 as a key factor of neovascularization and immune activation in the laser-induced choroidal neovascularization (CNV) mouse model of AMD. Block of TPC2 reduced retinal VEGFA and IL-1ß levels and diminished neovascularization and immune activation. Mechanistically, TPC2 mediates cationic currents in endolysosomal organelles of immune cells and lack of TPC2 leads to reduced IL-1ß levels in areas of choroidal neovascularization due to endolysosomal trapping. Taken together, our study identifies TPC2 as a promising novel therapeutic target for the treatment of AMD.


Assuntos
Canais de Cálcio/genética , Interleucina-1beta/metabolismo , Lasers/efeitos adversos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Degeneração Macular Exsudativa/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Angiofluoresceinografia , Humanos , Lisossomos/metabolismo , Camundongos , Retina/metabolismo , Degeneração Macular Exsudativa/etiologia , Degeneração Macular Exsudativa/metabolismo
3.
Mol Ther Methods Clin Dev ; 20: 587-600, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33665228

RESUMO

Inherited retinal dystrophies (IRDs) are characterized by progressive degeneration and loss of light-sensing photoreceptors. The most promising therapeutic approach for IRDs is gene supplementation therapy using viral vectors, which requires the presence of viable photoreceptors at the time of intervention. At later disease stages, photoreceptors are lost and can no longer be rescued with this approach. For these patients, conferring light-sensing abilities to the remaining interneurons of the ON circuit (i.e., ON bipolar cells) using optogenetic tools poses an alternative treatment strategy. Such treatments, however, are hampered by the lack of efficient gene delivery tools targeting ON bipolar cells, which in turn rely on the effective isolation of these cells to facilitate tool development. Herein, we describe a method to selectively isolate ON bipolar cells via fluorescence-activated cell sorting (FACS), based on the expression of two intracellular markers. We show that the method is compatible with highly sensitive downstream analyses and suitable for the isolation of ON bipolar cells from healthy as well as degenerated mouse retinas. Moreover, we demonstrate that this approach works effectively using non-human primate (NHP) retinal tissue, thereby offering a reliable pipeline for universal screening strategies that do not require inter-species adaptations or transgenic animals.

4.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652907

RESUMO

Photoreceptors are the light-sensing cells of the retina and the major cell type affected in most inherited retinal degenerations. Different metabolic pathways sustain their high energetic demand in physiological conditions, particularly aerobic glycolysis. The principal metabolome of the mature retina has been studied, but only limited information is available on metabolic adaptations in response to key developmental events, such as eye opening. Moreover, dynamic metabolic changes due to retinal degeneration are not well understood. Here, we aimed to explore and map the ocular metabolic dynamics induced by eye opening in healthy (wild type) or Pde6b-mutant (retinal degeneration 1, Rd1) mice, in which photoreceptors degenerate shortly after eye opening. To unravel metabolic differences emerging before and after eye opening under physiological and pathophysiological conditions, we performed nuclear magnetic resonance (NMR) spectroscopy-based metabolome analysis of wild type and Rd1 retina and vitreous/lens. We show that eye opening is accompanied by changes in the concentration of selected metabolites in the retina and by alterations in the vitreous/lens composition only in the retinal degeneration context. As such, we identify NAcetylaspartate as a potential novel vitreous/lens marker reflecting progressive retinal degeneration. Thus, our data can help elucidating mechanisms underlying key events in retinal physiology and reveal changes occurring in pathology, while highlighting the importance of the vitreous/lens in the characterization of retinal diseases.


Assuntos
Cristalino/metabolismo , Metaboloma , Retina/metabolismo , Degeneração Retiniana/metabolismo , Corpo Vítreo/metabolismo , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Modelos Animais de Doenças , Cristalino/patologia , Camundongos , Mutação , Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Corpo Vítreo/patologia
5.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374621

RESUMO

Mutations in the CNGA3 gene, which encodes the A subunit of the cyclic guanosine monophosphate (cGMP)-gated cation channel in cone photoreceptor outer segments, cause total colour blindness, also referred to as achromatopsia. Cones lacking this channel protein are non-functional, accumulate high levels of the second messenger cGMP and degenerate over time after induction of ER stress. The cell death mechanisms that lead to loss of affected cones are only partially understood. Here, we explored the disease mechanisms in the Cnga3 knockout (KO) mouse model of achromatopsia. We found that another important effector of cGMP, the cGMP-dependent protein kinase 2 (Prkg2) is crucially involved in cGMP cytotoxicity of cones in Cnga3 KO mice. Virus-mediated knockdown or genetic ablation of Prkg2 in Cnga3 KO mice counteracted degeneration and preserved the number of cones. Analysis of markers of endoplasmic reticulum stress and unfolded protein response confirmed that induction of these processes in Cnga3 KO cones also depends on Prkg2. In conclusion, we identified Prkg2 as a novel key mediator of cone photoreceptor degeneration in achromatopsia. Our data suggest that this cGMP mediator could be a novel pharmacological target for future neuroprotective therapies.


Assuntos
Defeitos da Visão Cromática/etiologia , Defeitos da Visão Cromática/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo II/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/deficiência , Células Fotorreceptoras Retinianas Cones/metabolismo , Animais , Biomarcadores , Defeitos da Visão Cromática/patologia , GMP Cíclico/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo II/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Estresse do Retículo Endoplasmático , Imunofluorescência , Expressão Gênica , Camundongos , Camundongos Knockout , Microscopia Confocal , Modelos Biológicos , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Resposta a Proteínas não Dobradas
6.
Cell Stem Cell ; 18(3): 396-409, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26748418

RESUMO

Despite the widespread interest in direct neuronal reprogramming, the mechanisms underpinning fate conversion remain largely unknown. Our study revealed a critical time point after which cells either successfully convert into neurons or succumb to cell death. Co-transduction with Bcl-2 greatly improved negotiation of this critical point by faster neuronal differentiation. Surprisingly, mutants with reduced or no affinity for Bax demonstrated that Bcl-2 exerts this effect by an apoptosis-independent mechanism. Consistent with a caspase-independent role, ferroptosis inhibitors potently increased neuronal reprogramming by inhibiting lipid peroxidation occurring during fate conversion. Genome-wide expression analysis confirmed that treatments promoting neuronal reprogramming elicit an anti-oxidative stress response. Importantly, co-expression of Bcl-2 and anti-oxidative treatments leads to an unprecedented improvement in glial-to-neuron conversion after traumatic brain injury in vivo, underscoring the relevance of these pathways in cellular reprograming irrespective of cell type in vitro and in vivo.


Assuntos
Técnicas de Reprogramação Celular , Reprogramação Celular , Neuroglia/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Transdução Genética , Animais , Camundongos , Neuroglia/citologia , Neurônios/citologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/genética
7.
Exp Neurol ; 247: 496-505, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23360806

RESUMO

The homeobox-containing transcription factor Engrailed-2 (En2) is involved in patterning and neuronal differentiation of the midbrain/hindbrain region, where it is prominently expressed. En2 mRNA is also expressed in the adult mouse hippocampus and cerebral cortex, indicating that it might also function in these brain areas. Genome-wide association studies revealed that En2 is a candidate gene for autism spectrum disorders (ASD), and mice devoid of its expression (En2(-/-) mice) display anatomical, behavioral and clinical "autistic-like" features. Since reduced GABAergic inhibition has been proposed as a possible pathogenic mechanism of ASD, we hypothesized that the phenotype of En2(-/-) mice might include defective GABAergic innervation in the forebrain. Here we show that the Engrailed proteins are present in postnatal GABAergic neurons of the mouse hippocampus and cerebral cortex, and adult En2(-/-) mice show reduced expression of GABAergic marker mRNAs in these areas. In addition, reduction in parvalbumin (PV), somatostatin (SOM) and neuropeptide Y (NPY) expressing interneurons is detected in the hippocampus and cerebral cortex of adult En2(-/-) mice. Our results raise the possibility of a link between altered function of En2, anatomical deficits of GABAergic forebrain neurons and the pathogenesis of ASD.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/patologia , Córtex Cerebral/citologia , Neurônios GABAérgicos/patologia , Hipocampo/citologia , Proteínas do Tecido Nervoso/deficiência , Animais , Modelos Animais de Doenças , Proteínas de Homeodomínio , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeo Y/metabolismo , Parvalbuminas/metabolismo , Somatostatina/metabolismo
8.
Cell Mol Life Sci ; 70(6): 1095-111, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23069989

RESUMO

We investigated the effects of bone morphogenetic proteins (BMPs) in determining the positional identity of neurons generated in vitro from mouse embryonic stem cells (ESCs), an aspect that has been neglected thus far. Classical embryological studies in lower vertebrates indicate that BMPs inhibit the default fate of pluripotent embryonic cells, which is both neural and anterior. Moreover, mammalian ESCs generate neurons more efficiently when cultured in a minimal medium containing BMP inhibitors. In this paper, we show that mouse ESCs produce, secrete, and respond to BMPs during in vitro neural differentiation. After neuralization in a minimal medium, differentiated ESCs show a gene expression profile consistent with a midbrain identity, as evaluated by the analysis of a number of markers of anterior-posterior and dorsoventral identity. We found that BMPs endogenously produced during neural differentiation mainly act by inhibiting the expression of a telencephalic gene profile, which was revealed by the treatment with Noggin or with other BMP inhibitors. To better characterize the effect of BMPs on positional fate, we compared the global gene expression profiles of differentiated ESCs with those of embryonic forebrain, midbrain, and hindbrain. Both Noggin and retinoic acid (RA) support neuronal differentiation of ESCs, but they show different effects on their positional identity: whereas RA supports the typical gene expression profile of hindbrain neurons, Noggin induces a profile characteristic of dorsal telencephalic neurons. Our findings show that endogenously produced BMPs affect the positional identity of the neurons that ESCs spontaneously generate when differentiating in vitro in a minimal medium. The data also support the existence of an intrinsic program of neuronal differentiation with dorsal telencephalic identity. Our method of ESC neuralization allows for fast differentiation of neural cells via the same signals found during in vivo embryonic development and for the acquisition of cortical identity by the inhibition of BMP alone.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios/citologia , Transdução de Sinais/fisiologia , Animais , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Perfilação da Expressão Gênica , Imuno-Histoquímica , Técnicas In Vitro , Camundongos , Análise em Microsséries , Neurônios/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Tretinoína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...