Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; 39(4): 503-515, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28274182

RESUMO

The aim of this study was to evaluate the effect of light intensity and temperature on nutrient removal and biomass productivity in a microalgae-bacteria culture and their effects on the microalgae-bacteria competition. Three experiments were carried out at constant temperature and various light intensities: 40, 85 and 125 µE m-2 s-1. Other two experiments were carried out at variable temperatures: 23 ± 2°C and 28 ± 2°C at light intensity of 85 and 125 µE m-2 s-1, respectively. The photobioreactor was fed by the effluent from an anaerobic membrane bioreactor. High nitrogen and phosphorus removal efficiencies (about 99%) were achieved under the following operating conditions: 85-125 µE m-2 s-1 and 22 ± 1°C. In the microalgae-bacteria culture studied, increasing light intensity favoured microalgae growth and limited the nitrification process. However, a non-graduated temperature increase (up to 32°C) under the light intensities studied caused the proliferation of nitrifying bacteria and the nitrite and nitrate accumulation. Hence, light intensity and temperature are key parameters in the control of the microalgae-bacteria competition. Biomass productivity significantly increased with light intensity, reaching 50.5 ± 9.6, 80.3 ± 6.5 and 94.3 ± 7.9 mgVSS L-1 d-1 for a light intensity of 40, 85 and 125 µE m-2 s-1, respectively.


Assuntos
Bactérias , Chlorella/fisiologia , Fotobiorreatores/microbiologia , Eliminação de Resíduos Líquidos/métodos , Microalgas/fisiologia , Nitrogênio/análise , Fósforo/análise , Temperatura , Águas Residuárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...