Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(12): e23123, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149195

RESUMO

Antibody biotinylation is a process of attaching biotin molecules to antibodies by chemically modifying specific functional groups on the antibodies without altering their antigen recognition specificity. Biotin, a small vitamin, forms a strong and specific interaction with the protein streptavidin, resulting in a stable biotin-streptavidin (biotin-STV) complex. This biotin-STV interaction is widely exploited in various biotechnological applications, including biosensors. Biosensors are analytical devices that employ biological recognition elements, such as antibodies, enzymes, or nucleic acids, to detect and quantify target analytes in a sample. Antibodies are commonly used as recognition elements in biosensors due to their high specificity and affinity. In this study, the antibody anti-Bovine Serum Albumin (αBSA) has been biotinylated at different antibody:biotin ratios, and the stability of this labeling over time has been investigated. Furthermore, the sensitivity of the biosensor for detecting the Bovine Serum Albumin (BSA) protein has been compared using the biotinylated antibody and the non-biotinylated form, showing a four-fold improvement in detection. This system was also compared with the Enzyme-Linked ImmunoSorbent Assay (ELISA) technique. The advantages of using biotinylated antibodies in biosensors include increased stability and reproducibility of the biorecognition layer, as well as flexibility in sensor design, as different biotinylated antibodies can be utilized for diverse target analytes without altering the sensor's architecture.

2.
Sens Actuators B Chem ; 345: 130394, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34248283

RESUMO

The standard rapid approach for the diagnosis of coronavirus disease 2019 (COVID-19) is the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. The detection of specific anti-SARS-CoV-2 immunoglobulins is crucial for screening people who have been exposed to the virus, whether or not they presented symptoms. Recent publications report different methods for the detection of specific IgGs, IgMs, and IgAs against SARS-CoV-2; these methods mainly detect immunoglobulins in the serum using conventional techniques such as rapid lateral flow tests or enzyme-linked immunosorbent assay (ELISA). In this article, we report the production of recombinant SARS-CoV-2 spike protein and the development of a rapid, reliable, cost-effective test, capable of detecting immunoglobulins in serum and saliva samples. This method is based on interferometric optical detection. The results obtained using this method and those obtained using ELISA were compared. Owing to its low cost and simplicity, this test can be used periodically for the early detection, surveillance, detection of immunity, and control of the spread of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...