Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(24)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817391

RESUMO

The zinc metallopeptidase Pseudomonas elastase (LasB) is a virulence factor of Pseudomonas aeruginosa (P. aeruginosa), a pathogenic bacterium that can cause nosocomial infections. The present study relates the structural analysis of 118 N-alpha-mercaptoacetyl dipeptides (NAMdPs) as LasB inhibitors. Field-based 3D-QSAR and molecular docking methods were employed to describe the essential interactions between NAMdPs and LasB binding sites, and the chemical features that determine their differential activities. We report a predictive 3D-QSAR model that was developed according to the internal and external validation tests. The best model, including steric, electrostatic, hydrogen bond donor, hydrogen bond acceptor, and hydrophobic fields, was found to depict a three-dimensional map with the local positive and negative effects of these chemotypes on the LasB inhibitory activities. Furthermore, molecular docking experiments yielded bioactive conformations of NAMdPs inside the LasB binding site. The series of NAMdPs adopted a similar orientation with respect to phosphoramidon within the LasB binding site (crystallographic reference), where the backbone atoms of NAMdPs are hydrogen-bonded to the LasB residues N112, A113, and R198, similarly to phosphoramidon. Our study also included a deep description of the residues involved in the protein-ligand interaction patterns for the whole set of NAMdPs, through the use of interaction fingerprints (IFPs).


Assuntos
Proteínas de Bactérias , Dipeptídeos/química , Metaloendopeptidases , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Pseudomonas aeruginosa/enzimologia , Fatores de Virulência , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Metaloendopeptidases/antagonistas & inibidores , Metaloendopeptidases/química , Pseudomonas aeruginosa/patogenicidade , Relação Quantitativa Estrutura-Atividade , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/química
2.
J Mol Model ; 25(1): 20, 2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30610383

RESUMO

Carbonic acid dimer, (CA)2, (H2CO3)2, helps to explain the existence of this acid as a stable species, different to a simple sum between carbon dioxide and water. Five distinct, well characterized types of intermolecular interactions contribute to the stabilization of the dimers, namely, C=O⋯H-O, H-O⋯H-O, C=O⋯C=O, C=O⋯O-H, and C-O⋯O-H. In many cases, the stabilizing hydrogen bonds are of at least the same strength as in the water dimer. We dissect the nature of intermolecular interactions and assess their influence on stability. For a set of 40 (H2CO3)2 isomers, C=O⋯H-O hydrogen bonds between the carbonyl oxygen in one CA molecule and the acidic hydrogen in the hydroxyl group at a second CA molecule are the major stabilizing factors because they exhibit the shortest interaction distances, the largest orbital interaction energies, and the largest accumulation of electron densities around the corresponding bond critical points. In most cases, these are closed-shell hydrogen bonds, however, in a few instances, some covalent character is induced. Bifurcated hydrogen bonds are a common occurrence in the dimers of carbonic acid, resulting in a complex picture with multiple orbital interactions of various strengths. Two anti-anti monomers interacting via the strongest C=O⋯H-O hydrogen bonds are the ingredients for the formation of the lowest energy dimers. Graphical Abstract Carbonic acid dimer, (CA)2, (H2CO3)2, helps explaining the existence of this acid as a stable species, different to a simple sum between carbon dioxide and water. Five distinct, well-characterized types of intermolecular interactions contribute to the stabilization of the dimers, namely, C=O⋯H-O, H-O⋯O-H, C=O⋯C=O, C=O⋯O-C, and C-O⋯O-C. In many cases, the stabilizing hydrogen bonds are of at least the same strength as in the water dimer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...