Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(24): 9164-9172, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38903215

RESUMO

Dimeric indolosesquiterpene alkaloids, typically N-N- and C-N-linked xiamycin dimers, feature a pentacyclic framework with four contiguous stereogenic centers at the periphery of a trans-decalin scaffold to which a carbazole unit is attached. In comparison with actual biosynthetic dixiamycin derivatives, we designed C-C-linked xiamycin dimers, aiming to use them as a powerful tool to create unique scaffolds as drug candidates. In this work, we disclose the first synthetic route to access a C-C dimeric indolosesquiterpene skeleton, featuring a hypervalent iodine (PIFA)-catalyzed oxidative dimerization reaction in a single-step operation with overwhelming control over the chemoselectivity and regioselectivity. This strategy has been successfully applied to the synthesis of a C-C dimer of xiamycin A (3) and xiamycin A methyl ester (15) that demonstrates a new synthetic pathway for dimeric indolosesquiterpene alkaloids.

2.
Chem Sci ; 14(30): 8047-8053, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37538818

RESUMO

N-N dimeric indolosesquiterpene alkaloids constitute a class of under-investigated architecturally intriguing natural products. Herein, we report the first chemical oxidation approach to the asymmetric total syntheses of these atropisomeric indolosesquiterpenoids through N-N bond formation. Specifically, dixiamycins A (1a) and B (1b) were prepared through a Cu(i)-mediated aerobic dehydrogenative dimerization from the naturally occurring monomer xiamycin A methyl ester (2b); this preparation also represents the first total synthesis of dixiamycin A (1a). The monomer xiamycin A methyl ester (2b) was synthesized via a late-stage Buchwald Pd(ii)-mediated aerobic dehydrogenative C-N bond formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...