Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pigment Cell Melanoma Res ; 36(5): 365-377, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37341054

RESUMO

An increasing number of cancer subtypes are treated with front-line immunotherapy. However, approaches to overcome primary and acquired resistance remain limited. Preclinical mouse models are often used to investigate resistance mechanisms, novel drug combinations, and delivery methods; yet most of these models lack the genetic diversity and mutational patterns observed in human tumors. Here we describe a series of 13 C57BL/6J melanoma cell lines to address this gap in the field. The Ohio State University-Moffitt Melanoma Exposed to Radiation (OSUMMER) cell lines are derived from mice expressing endogenous, melanocyte-specific, and clinically relevant Nras driver mutations (Q61R, Q61K, or Q61L). Exposure of these animals to a single, non-burning dose of ultraviolet B accelerates the onset of spontaneous melanomas with mutational patterns akin to human disease. Furthermore, in vivo irradiation selects against potent tumor antigens, which could prevent the outgrowth of syngeneic cell transfers. Each OSUMMER cell line possesses distinct in vitro growth properties, trametinib sensitivity, mutational signatures, and predicted antigenicity. Analysis of OSUMMER allografts shows a correlation between strong, predicted antigenicity and poor tumor outgrowth. These data suggest that the OSUMMER lines will be a valuable tool for modeling the heterogeneous responses of human melanomas to targeted and immune-based therapies.


Assuntos
Linhagem Celular Tumoral , Melanoma , Animais , Camundongos , Linhagem Celular Tumoral/efeitos da radiação , GTP Fosfo-Hidrolases/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética
2.
Pigment Cell Melanoma Res ; 36(1): 6-18, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36148789

RESUMO

Melanin is a free-radical scavenger, antioxidant, and broadband absorber of ultraviolet (UV) radiation which protects the skin from environmental carcinogenesis. However, melanin synthesis and UV-induced reactive melanin species are also implicated in melanocyte genotoxicity. Here, we attempted to reconcile these disparate functions of melanin using a UVB-sensitive, NRAS-mutant mouse model, TpN. We crossed TpN mice heterozygous for an inactivating mutation in Tyrosinase to produce albino and black littermates on a C57BL/6J background. These animals were then exposed to a single UVB dose on postnatal day three when keratinocytes in the skin have yet to be melanized. Approximately one-third (35%) of black mice were protected from UVB-accelerated tumor formation. However, melanoma growth rates, tumor mutational burdens, and gene expression profiles were similar in melanomas from black and albino mice. Skin from albino mice contained more cyclobutane pyrimidine dimer (CPD) positive cells than black mice 1-h post-irradiation. However, this trend gradually reversed over time with CPDs becoming more prominent in black than albino melanocytes at 48 h. These results show that in the absence of epidermal pigmentation, melanocytic melanin limits the tumorigenic effects of acute UV exposure but fails to protect melanocytes from UVB-induced mutagenesis.


Assuntos
Melanoma , Neoplasias Cutâneas , Camundongos , Animais , Melaninas/metabolismo , Neoplasias Cutâneas/patologia , Camundongos Endogâmicos C57BL , Melanócitos/metabolismo , Melanoma/patologia , Raios Ultravioleta , Mutagênese
3.
Cancer Cell ; 40(8): 815-817, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35868308

RESUMO

In a recent publication in Nature, Fane et al. establish WNT5A as a central, age-sensitive regulator of the dormancy-to-reactivation axis of melanoma. They show that aged fibroblasts in the lungs suppress WNT5A signaling induced at the primary tumor site to awaken dormant melanoma cells and promote the outgrowth of metastases.


Assuntos
Envelhecimento , Neoplasias Pulmonares , Pulmão , Melanoma , Envelhecimento/metabolismo , Fibroblastos/metabolismo , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Melanoma/patologia , Metástase Neoplásica , Transdução de Sinais , Microambiente Tumoral , Proteína Wnt-5a/metabolismo
4.
Nat Commun ; 13(1): 3153, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672316

RESUMO

A distinct profile of NRAS mutants is observed in each tumor type. It is unclear whether these profiles are determined by mutagenic events or functional differences between NRAS oncoproteins. Here, we establish functional hallmarks of NRAS mutants enriched in human melanoma. We generate eight conditional, knock-in mouse models and show that rare melanoma mutants (NRAS G12D, G13D, G13R, Q61H, and Q61P) are poor drivers of spontaneous melanoma formation, whereas common melanoma mutants (NRAS Q61R, Q61K, or Q61L) induce rapid tumor onset with high penetrance. Molecular dynamics simulations, combined with cell-based protein-protein interaction studies, reveal that melanomagenic NRAS mutants form intramolecular contacts that enhance BRAF binding affinity, BRAF-CRAF heterodimer formation, and MAPK > ERK signaling. Along with the allelic series of conditional mouse models we describe, these results establish a mechanistic basis for the enrichment of specific NRAS mutants in human melanoma.


Assuntos
Melanoma , Proteínas Monoméricas de Ligação ao GTP/normas , Neoplasias Cutâneas , Animais , Modelos Animais de Doenças , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Camundongos , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais/genética , Neoplasias Cutâneas/genética
5.
Life Sci Alliance ; 4(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34210801

RESUMO

BRAF-mutant melanomas are more likely than NRAS-mutant melanomas to arise in anatomical locations protected from chronic sun damage. We hypothesized that this discrepancy in tumor location is a consequence of the differential sensitivity of BRAF and NRAS-mutant melanocytes to ultraviolet light (UV)-mediated carcinogenesis. We tested this hypothesis by comparing the mutagenic consequences of a single neonatal, ultraviolet-AI (UVA; 340-400 nm) or ultraviolet-B (UVB; 280-390 nm) exposure in mouse models heterozygous for mutant Braf or homozygous for mutant Nras Tumor onset was accelerated by UVB, but not UVA, and the resulting melanomas contained recurrent mutations affecting the RING domain of MAP3K1 and Actin-binding domain of Filamin A. Melanomas from UVB-irradiated, Braf-mutant mice averaged twice as many single-nucleotide variants and five times as many dipyrimidine variants than tumors from similarly irradiated Nras-mutant mice. A mutational signature discovered in UVB-accelerated tumors mirrored COSMIC signatures associated with human skin cancer and was more prominent in Braf- than Nras-mutant murine melanomas. These data show that a single UVB exposure yields a greater burden of mutations in murine tumors driven by oncogenic Braf.


Assuntos
Melanoma/etiologia , Proteínas Monoméricas de Ligação ao GTP/genética , Mutagênese/efeitos da radiação , Mutação/efeitos da radiação , Proteínas Proto-Oncogênicas B-raf/genética , Raios Ultravioleta/efeitos adversos , Animais , Biomarcadores Tumorais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Predisposição Genética para Doença , Melanoma/metabolismo , Melanoma/patologia , Camundongos
6.
J Invest Dermatol ; 139(9): 1857-1859, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31445573

RESUMO

The clinical management of large and giant congenital melanocytic nevi (lgCMN) relies heavily upon iterative surgical procedures. In this issue Rouille et al. (2019) use lgCMN explants and a newly developed patient-derived xenograft model to show that the local administration of MEK and Akt inhibitors limits the lgCMN proliferative potential. These findings, along with emerging reports, support continued investigation of targeted therapies in lgCMN.


Assuntos
Nevo Pigmentado , Neoplasias Cutâneas , Humanos , Proteínas Proto-Oncogênicas c-akt
7.
J Vis Exp ; (148)2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31305511

RESUMO

Defects in fibroblast or melanocyte function are associated with skin diseases, including poor barrier function, defective wound healing, pigmentation defects and cancer. Vital to the understanding and amelioration of these diseases are experiments in primary fibroblast and melanocyte cultures. Nevertheless, current protocols for melanocyte isolation require that the epidermal and dermal layers of the skin are trypsinized and manually disassociated. This process is time consuming, technically challenging and contributes to inconsistent yields. Furthermore, methods to simultaneously generate pure fibroblast cultures from the same tissue sample are not readily available. Here, we describe an improved protocol for isolating melanocytes and fibroblasts from the skin of mice on postnatal days 0-4. In this protocol, whole skin is mechanically homogenized using a tissue chopper and then briefly digested with collagenase and trypsin. Cell populations are then isolated through selective plating followed by G418 treatment. This procedure results in consistent melanocyte and fibroblast yields from a single mouse in less than 90 min. This protocol is also easily scalable, allowing researchers to process large cohorts of animals without a significant increase in hands-on time. We show through flow cytometric assessments that cultures established using this protocol are highly enriched for melanocytes or fibroblasts.


Assuntos
Técnicas de Cultura de Células/métodos , Fibroblastos/citologia , Melanócitos/citologia , Animais , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Fatores de Tempo
8.
J Virol ; 90(7): 3760-72, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26819304

RESUMO

UNLABELLED: Human T-cell leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) are highly related retroviruses that transform T cells in vitro but have distinct pathological outcomes in vivo. HTLV-1 encodes a protein from the antisense strand of its proviral genome, the HTLV-1 basic leucine zipper factor (HBZ), which inhibits Tax-1-mediated viral transcription and promotes cell proliferation, a high proviral load, and persistence in vivo. In adult T-cell leukemia/lymphoma (ATL) cell lines and patient T cells, hbz is often the only viral gene expressed. The antisense strand of the HTLV-2 proviral genome also encodes a protein termed APH-2. Like HBZ, APH-2 is able to inhibit Tax-2-mediated viral transcription and is detectable in most primary lymphocytes from HTLV-2-infected patients. However, unlike HBZ, the loss of APH-2 in vivo results in increased viral replication and proviral loads, suggesting that HBZ and APH-2 modulate the virus and cellular pathways differently. Herein, we examined the effect of APH-2 on several known HBZ-modulated pathways: NF-κB (p65) transactivation, transforming growth factor ß (TGF-ß) signaling, and interferon regulatory factor 1 (IRF-1) transactivation. Like HBZ, APH-2 has the ability to inhibit p65 transactivation. Conversely, HBZ and APH-2 have divergent effects on TGF-ß signaling and IRF-1 transactivation. Quantitative PCR and protein half-life experiments revealed a substantial disparity between HBZ and APH-2 transcript levels and protein stability, respectively. Taken together, our data further elucidate the functional differences between HBZ and APH-2 and how these differences can have profound effects on the survival of infected cells and, ultimately, pathogenesis. IMPORTANCE: Human T-cell leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) are highly related retroviruses that have distinct pathological outcomes in infected hosts. Functional comparisons of HTLV-1 and HTLV-2 proteins provide a better understanding about how HTLV-1 infection is associated with disease and HTLV-2 infection is not. The HTLV genome antisense-strand genes hbz and aph-2 are often the only viral genes expressed in HTLV-infected T cells. Previously, our group found that HTLV-1 HBZ and HTLV-2 APH-2 had distinct effects in vivo and hypothesized that the differences in the interactions of HBZ and APH-2 with important cell signaling pathways dictate whether cells undergo proliferation, apoptosis, or senescence. Ultimately, these functional differences may affect how HTLV-1 causes disease but HTLV-2 generally does not. In the current study, we compared the effects of HBZ and APH-2 on several HTLV-relevant cellular pathways, including the TGF-ß signaling, NF-κB activation, and IRF-1 transactivation pathways.


Assuntos
Interações Hospedeiro-Patógeno , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Proteínas Virais/metabolismo , Linhagem Celular , Regulação Viral da Expressão Gênica , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição RelA/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...