Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916914

RESUMO

Inertial confinement fusion and inertial fusion energy experiments diagnose the geometry of the fusion region through imaging of the neutrons released through fusion reactions. Pinhole arrays typically used for such imaging require thick substrates to obtain high contrast along with a small pinhole diameter to obtain high resolution capability, resulting in pinholes that have large aspect ratios. This leads to expensive pinhole arrays that have small solid angles and are difficult to align. Here, we propose a coded aperture with scatter and partial attenuation (CASPA) for fusion neutron imaging that relaxes the thick substrate requirement for good image contrast. These coded apertures are expected to scale to larger solid angles and are easier to align without sacrificing imaging resolution or throughput. We use Monte Carlo simulations (Geant4) to explore a coded aperture design to measure neutron implosion asymmetries on fusion experiments at the National Ignition Facility (NIF) and discuss the viability of this technique, matching the current nominal resolution of 10 µm. The results show that a 10 mm thick tungsten CASPA can image NIF implosions with neutron yields above 1014 with quality comparable to unprocessed data from a current NIF neutron imaging aperture. This CASPA substrate is 20 times thinner than the current aperture arrays for fusion neutron imaging and less than one mean free-path of 14.1 MeV neutrons through the substrate. Since the resolution, solid angle, and throughput are decoupled in coded aperture imaging, the resolution and solid angle achievable with future designs will be limited primarily by manufacturing capability.

2.
Nat Commun ; 11(1): 6355, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311487

RESUMO

Laser wakefield accelerators promise to revolutionize many areas of accelerator science. However, one of the greatest challenges to their widespread adoption is the difficulty in control and optimization of the accelerator outputs due to coupling between input parameters and the dynamic evolution of the accelerating structure. Here, we use machine learning techniques to automate a 100 MeV-scale accelerator, which optimized its outputs by simultaneously varying up to six parameters including the spectral and spatial phase of the laser and the plasma density and length. Most notably, the model built by the algorithm enabled optimization of the laser evolution that might otherwise have been missed in single-variable scans. Subtle tuning of the laser pulse shape caused an 80% increase in electron beam charge, despite the pulse length changing by just 1%.

3.
Phys Rev E ; 101(4-1): 043208, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32422777

RESUMO

The formation of high energy density matter occurs in inertial confinement fusion, astrophysical, and geophysical systems. In this context, it is important to couple as much energy as possible into a target while maintaining high density. A recent experimental campaign, using buried layer (or "sandwich" type) targets and the ultrahigh laser contrast Vulcan petawatt laser facility, resulted in 500 Mbar pressures in solid density plasmas (which corresponds to about 4.6×10^{7}J/cm^{3} energy density). The densities and temperatures of the generated plasma were measured based on the analysis of x-ray spectral line profiles and relative intensities.

4.
Rev Sci Instrum ; 89(11): 113303, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30501337

RESUMO

We present a design for a pixelated scintillator based gamma-ray spectrometer for non-linear inverse Compton scattering experiments. By colliding a laser wakefield accelerated electron beam with a tightly focused, intense laser pulse, gamma-ray photons up to 100 MeV energies and with few femtosecond duration may be produced. To measure the energy spectrum and angular distribution, a 33 × 47 array of cesium-iodide crystals was oriented such that the 47 crystal length axis was parallel to the gamma-ray beam and the 33 crystal length axis was oriented in the vertical direction. Using an iterative deconvolution method similar to the YOGI code, modeling of the scintillator response using GEANT4 and fitting to a quantum Monte Carlo calculated photon spectrum, we are able to extract the gamma ray spectra generated by the inverse Compton interaction.

5.
Sci Rep ; 8(1): 4525, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540743

RESUMO

A key issue in realising the development of a number of applications of high-intensity lasers is the dynamics of the fast electrons produced and how to diagnose them. We report on measurements of fast electron transport in aluminium targets in the ultra-intense, short-pulse (<50 fs) regime using a high resolution temporally and spatially resolved optical probe. The measurements show a rapidly (≈0.5c) expanding region of Ohmic heating at the rear of the target, driven by lateral transport of the fast electron population inside the target. Simulations demonstrate that a broad angular distribution of fast electrons on the order of 60° is required, in conjunction with extensive recirculation of the electron population, in order to drive such lateral transport. These results provide fundamental new insight into fast electron dynamics driven by ultra-short laser pulses, which is an important regime for the development of laser-based radiation and particle sources.

6.
Mol Biosyst ; 13(5): 866-873, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28383583

RESUMO

Couchioplanes caeruleus DSM43634 synthesises 67-121C, an aromatic heptaene macrolide that contains a mannosyl-mycosaminyl disaccharide. An improved draft genome sequence was used to obtain the biosynthetic gene cluster for this antifungal. Bioinformatic analysis of the polyketide synthase indicated that extension modules 7 and 8 contain A-type ketoreductase and dehydratase domains. These modules are therefore predicted to form cis double bonds. The deduced stereostructure of the 67-121C macrolactone is identical to that experimentally determined for the partricin subgroup of aromatic heptaenes. Some of these polyenes are N-methylated on the aminoacetophenone moiety. The C. caeruleus AceS protein was shown to methylate 4-aminoacetophenone and esters of 4-aminobenzoate, but not 4-aminobenzoate. This suggests that the substrate specificity of AceS prevents it from interfering with folate biosynthesis. The methyltransferase should be valuable for chemoenzymatic alkylation of compounds that contain aminobenzoyl moieties.


Assuntos
Actinobacteria/química , Macrolídeos/metabolismo , Metiltransferases/genética , Polienos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Vias Biossintéticas , Biologia Computacional/métodos , Genoma Bacteriano , Metiltransferases/química , Conformação Molecular , Conformação Proteica , Domínios Proteicos , Análise de Sequência de DNA , Especificidade por Substrato
7.
Biotechnol Lett ; 39(6): 805-817, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28275884

RESUMO

New antibiotics are urgently required by human medicine as pathogens emerge with developed resistance to almost all antibiotic classes. Pioneering approaches, methodologies and technologies have facilitated a new era in antimicrobial discovery. Innovative culturing techniques such as iChip and co-culturing methods which use 'helper' strains to produce bioactive molecules have had notable success. Exploiting antibiotic resistance to identify antibacterial producers performed in tandem with diagnostic PCR based identification approaches has identified novel candidates. Employing powerful metagenomic mining and metabolomic tools has identified the antibiotic'ome, highlighting new antibiotics from underexplored environments and silent gene clusters enabling researchers to mine for scaffolds with both a novel mechanism of action and also few clinically established resistance determinants. Modern biotechnological approaches are delivering but will require support from government initiatives together with changes in regulation to pave the way for valuable, efficacious, highly targeted, pathogen specific antimicrobial therapies.


Assuntos
Antibacterianos , Biotecnologia , Técnicas de Cocultura , Descoberta de Drogas , Aspergillus , Metagenômica , Streptomyces
8.
Phys Rev E ; 93: 043201, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27176413

RESUMO

An analysis of an electron spectrometer used to characterize fast electrons generated by ultraintense (10^{20}Wcm^{-2}) laser interaction with a preformed plasma of scale length measured by shadowgraphy is presented. The effects of fringing magnetic fields on the electron spectral measurements and the accuracy of density scale-length measurements are evaluated. 2D EPOCH PIC code simulations are found to be in agreement with measurements of the electron energy spectra showing that laser filamentation in plasma preformed by a prepulse is important with longer plasma scale lengths (>8 µm).

9.
Artigo em Inglês | MEDLINE | ID: mdl-25122398

RESUMO

We investigate subpicosecond dynamics of warm dense hydrogen at the XUV free-electron laser facility (FLASH) at DESY (Hamburg). Ultrafast impulsive electron heating is initiated by a ≤ 300-fs short x-ray burst of 92-eV photon energy. A second pulse probes the sample via x-ray scattering at jitter-free variable time delay. We show that the initial molecular structure dissociates within (0.9 ± 0.2) ps, allowing us to infer the energy transfer rate between electrons and ions. We evaluate Saha and Thomas-Fermi ionization models in radiation hydrodynamics simulations, predicting plasma parameters that are subsequently used to calculate the static structure factor. A conductivity model for partially ionized plasma is validated by two-temperature density-functional theory coupled to molecular dynamic simulations and agrees with the experimental data. Our results provide important insights and the needed experimental data on transport properties of dense plasmas.


Assuntos
Condutividade Elétrica , Elétrons , Hidrogênio/química , Temperatura , Hidrodinâmica , Lasers , Simulação de Dinâmica Molecular , Teoria Quântica , Difração de Raios X
10.
Sci Rep ; 4: 5214, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24909903

RESUMO

Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid.

11.
Phys Rev Lett ; 112(10): 105002, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24679300

RESUMO

We report on the dynamics of ultrafast heating in cryogenic hydrogen initiated by a ≲300 fs, 92 eV free electron laser x-ray burst. The rise of the x-ray scattering amplitude from a second x-ray pulse probes the transition from dense cryogenic molecular hydrogen to a nearly uncorrelated plasmalike structure, indicating an electron-ion equilibration time of ∼0.9 ps. The rise time agrees with radiation hydrodynamics simulations based on a conductivity model for partially ionized plasma that is validated by two-temperature density-functional theory.

12.
Artigo em Inglês | MEDLINE | ID: mdl-23679534

RESUMO

The equation of state of light elements is essential to understand the structure of Jovian planets and inertial confinement fusion research. The Omega laser was used to drive a planar shock wave in the cryogenically cooled deuterium, creating warm dense matter conditions. X-ray scattering was used to determine the spectrum near the boundary of the collective and noncollective scattering regimes using a narrow band x-ray source in backscattering geometry. Our scattering spectra are thus sensitive to the individual electron motion as well as the collective plasma behavior and provide a measurement of the electron density, temperature, and ionization state. Our data are consistent with velocity-interferometry measurements previously taken on the same shocked deuterium conditions and presented by K. Falk et al. [High Energy Density Phys. 8, 76 (2012)]. This work presents a comparison of the two diagnostic systems and offers a detailed discussion of challenges encountered.

13.
Sci Rep ; 2: 889, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23189238

RESUMO

Creating non-equilibrium states of matter with highly unequal electron and lattice temperatures (T(ele)≠T(ion)) allows unsurpassed insight into the dynamic coupling between electrons and ions through time-resolved energy relaxation measurements. Recent studies on low-temperature laser-heated graphite suggest a complex energy exchange when compared to other materials. To avoid problems related to surface preparation, crystal quality and poor understanding of the energy deposition and transport mechanisms, we apply a different energy deposition mechanism, via laser-accelerated protons, to isochorically and non-radiatively heat macroscopic graphite samples up to temperatures close to the melting threshold. Using time-resolved x ray diffraction, we show clear evidence of a very small electron-ion energy transfer, yielding approximately three times longer relaxation times than previously reported. This is indicative of the existence of an energy transfer bottleneck in non-equilibrium warm dense matter.

14.
Rev Sci Instrum ; 83(10): 10E113, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126935

RESUMO

We investigated various diagnostic techniques to measure the 511 keV annihilation radiations. These include step-wedge filters, transmission crystal spectroscopy, single-hit CCD detectors, and streaked scintillating detection. While none of the diagnostics recorded conclusive results, the step-wedge filter that is sensitive to the energy range between 100 keV and 700 keV shows a signal around 500 keV that is clearly departing from a pure Bremsstrahlung spectrum and that we ascribe to annihilation radiation.

15.
Phys Rev Lett ; 109(6): 065002, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-23006275

RESUMO

We have used the Linac Coherent Light Source to generate solid-density aluminum plasmas at temperatures of up to 180 eV. By varying the photon energy of the x rays that both create and probe the plasma, and observing the K-α fluorescence, we can directly measure the position of the K edge of the highly charged ions within the system. The results are found to disagree with the predictions of the extensively used Stewart-Pyatt model, but are consistent with the earlier model of Ecker and Kröll, which predicts significantly greater depression of the ionization potential.

16.
Sci Rep ; 2: 491, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768381

RESUMO

A common misperception of quantum gravity is that it requires accessing energies up to the Planck scale of 10¹9 GeV, which is unattainable from any conceivable particle collider. Thanks to the development of ultra-high intensity optical lasers, very large accelerations can be now the reached at their focal spot, thus mimicking, by virtue of the equivalence principle, a non Minkowski space-time. Here we derive a semiclassical extension of quantum mechanics that applies to different metrics, but under the assumption of weak gravity. We use our results to show that Thomson scattering of photons by uniformly accelerated electrons predicts an observable effect depending upon acceleration and local metric. In the laboratory frame, a broadening of the Thomson scattered x ray light from a fourth generation light source can be used to detect the modification of the metric associated to electrons accelerated in the field of a high power optical laser.

17.
Nature ; 481(7382): 480-3, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22281596

RESUMO

The standard model for the origin of galactic magnetic fields is through the amplification of seed fields via dynamo or turbulent processes to the level consistent with present observations. Although other mechanisms may also operate, currents from misaligned pressure and temperature gradients (the Biermann battery process) inevitably accompany the formation of galaxies in the absence of a primordial field. Driven by geometrical asymmetries in shocks associated with the collapse of protogalactic structures, the Biermann battery is believed to generate tiny seed fields to a level of about 10(-21) gauss (refs 7, 8). With the advent of high-power laser systems in the past two decades, a new area of research has opened in which, using simple scaling relations, astrophysical environments can effectively be reproduced in the laboratory. Here we report the results of an experiment that produced seed magnetic fields by the Biermann battery effect. We show that these results can be scaled to the intergalactic medium, where turbulence, acting on timescales of around 700 million years, can amplify the seed fields sufficiently to affect galaxy evolution.

18.
Nature ; 482(7383): 59-62, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22278059

RESUMO

Matter with a high energy density (>10(5) joules per cm(3)) is prevalent throughout the Universe, being present in all types of stars and towards the centre of the giant planets; it is also relevant for inertial confinement fusion. Its thermodynamic and transport properties are challenging to measure, requiring the creation of sufficiently long-lived samples at homogeneous temperatures and densities. With the advent of the Linac Coherent Light Source (LCLS) X-ray laser, high-intensity radiation (>10(17) watts per cm(2), previously the domain of optical lasers) can be produced at X-ray wavelengths. The interaction of single atoms with such intense X-rays has recently been investigated. An understanding of the contrasting case of intense X-ray interaction with dense systems is important from a fundamental viewpoint and for applications. Here we report the experimental creation of a solid-density plasma at temperatures in excess of 10(6) kelvin on inertial-confinement timescales using an X-ray free-electron laser. We discuss the pertinent physics of the intense X-ray-matter interactions, and illustrate the importance of electron-ion collisions. Detailed simulations of the interaction process conducted with a radiative-collisional code show good qualitative agreement with the experimental results. We obtain insights into the evolution of the charge state distribution of the system, the electron density and temperature, and the timescales of collisional processes. Our results should inform future high-intensity X-ray experiments involving dense samples, such as X-ray diffractive imaging of biological systems, material science investigations, and the study of matter in extreme conditions.

19.
Phys Rev Lett ; 109(26): 265003, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23368573

RESUMO

The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation-driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Ly(α) line emission at 2.96 keV. These first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×10(23) cm(-3), and an ionization of 0.8 (-0.25, +0.15). Two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.

20.
Phys Rev Lett ; 105(1): 015003, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20867455

RESUMO

Detailed angle and energy resolved measurements of positrons ejected from the back of a gold target that was irradiated with an intense picosecond duration laser pulse reveal that the positrons are ejected in a collimated relativistic jet. The laser-positron energy conversion efficiency is ∼2×10{-4}. The jets have ∼20 degree angular divergence and the energy distributions are quasimonoenergetic with energy of 4 to 20 MeV and a beam temperature of ∼1 MeV. The sheath electric field on the surface of the target is shown to determine the positron energy. The positron angular and energy distribution is controlled by varying the sheath field, through the laser conditions and target geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...