Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(20): 32058-32066, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859016

RESUMO

The wavelength of a single frequency quantum dot distributed feedback (DFB) laser operating in the O-band is athermalised over a 74 °C ambient temperature range. Two techniques are presented, one utilising the laser self-heating for tuning control, the other using a resistive heater. Both techniques show greatly improved power efficiency over conventional wavelength control schemes, and both demonstrate wavelength stability of better than 0.1 nm (17.5 GHz) without mode hops over the entire temperature range. The use of a high operating temperature quantum dot laser together with an innovative submount design to increase the thermal impedance of the device enables the improved use of the laser self-heating for wavelength tuning. The submount design entails the laser being suspended over an air gap with the use of glass supports, preventing heat from escaping from the diode.

2.
Opt Express ; 29(11): 16893-16903, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154242

RESUMO

Athermalisation is a procedure in which the wavelength of a semiconductor laser remains unchanged even as the temperature is altered. This is achieved by altering the currents that flow through the laser so as to maintain the wavelength and avoid mode hops. In this study, we demonstrate that lasers operating with a large red-shift with respect to the gain peak yield the best performance in terms of the highest temperature operation and also in terms of the widest athermal operating range. In particular, a device with red detuning of approximately 25 nm yields the best results. This device is athermalised continuously (without mode hops) from 5 to 106 oC, and discontinuously to 115 oC while maintaining wavelength stability of $\pm$0.4 GHz/0.003 nm and side mode suppression ratio of above 40 dB in most of the continuous range and above 30 dB in the discontinuous regime. Operating in this manner will enable semiconductor lasers to be used without a thermoelectric cooler in applications where the temperature changes substantially.

3.
Opt Express ; 29(10): 15802-15812, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985274

RESUMO

Two twelve-channel arrays based on surface-etched slot gratings, one with non-uniformly spaced slots and another with uniformly spaced slots are presented for laser operation in the O-band. A wavelength tuning range greater than 40 nm, with a side-mode suppression ratio (SMSR) > 40 dB over much of this range and output power greater than 20 mW, was obtained for the array with non-uniform slots over a temperature range of 15 °C - 60 °C. The introduction of multiple slot periods, chosen such that there is minimal overlap among the side reflection peaks, is employed to suppress modes lasing one free spectral range (FSR) from the intended wavelength. The tuning range of the array with uniformly spaced slots, on the other hand, was found to be discontinuous due to mode-hopping to modes one FSR away from the intended lasing mode which are not adequately suppressed. Spectral linewidth was found to vary across devices with the lowest measured linewidths in the range of 2 MHz to 4 MHz.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...