Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Conserv Physiol ; 11(1): coad006, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911047

RESUMO

Parasitism is an energetically costly event for host species. Dynamic energy budget (DEB) theory describes the metabolic dynamics of an individual organism through its lifetime. Models derived from DEB theory specify how an organism converts food to reserves (maintenance-free energy available for metabolism) and allocates mobilized reserves to maintenance, growth (increase of structural body mass) and maturation or reproduction. DEB models thus provide a useful approach to describe the consequences of parasitism for host species. We developed a DEB model for siscowet lake trout and modeled the impact of sea lamprey parasitism on growth and reproduction using data collected from studies documenting the long-term effects following a non-lethal sea lamprey attack. The model was parameterized to reflect the changes in allocation of energy towards growth and reproduction observed in lake trout following sea lamprey parasitism and includes an estradiol module that describes the conversion of reproductive reserves to ovarian mass based on estradiol concentration. In our DEB model, parasitism increased somatic and maturity maintenance costs, reduced estradiol and decreased the estradiol-mediated conversion efficiency of reproductive reserves to ovarian mass. Muscle lipid composition of lake trout influenced energy mobilization from the reserve (efficiency of converting reserves allocated to reproduction into eggs) and reproductive efficiency. These model changes accurately reflect observed empirical changes to ovarian mass and growth. This model provides a plausible explanation of the energetic mechanisms that lead to skipped spawning following sea lamprey parasitism and could be used in population models to explore sublethal impacts of sea lamprey parasitism and other stressors on population dynamics.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36325881

RESUMO

Problem formulation (PF) is a critical initial step in planning risk assessments for chemical exposures to wildlife, used either explicitly or implicitly in various jurisdictions to include registration of new pesticides, evaluation of new and existing chemicals released to the environment, and characterization of impact when chemical releases have occurred. Despite improvements in our understanding of the environment, ecology, and biological sciences, few risk assessments have used this information to enhance their value and predictive capabilities. In addition to advances in organism-level mechanisms and methods, there have been substantive developments that focus on population- and systems-level processes. Although most of the advances have been recognized as being state-of-the-science for two decades or more, there is scant evidence that they have been incorporated into wildlife risk assessment or risk assessment in general. In this article, we identify opportunities to consider elevating the relevance of wildlife risk assessments by focusing on elements of the PF stage of risk assessment, especially in the construction of conceptual models and selection of assessment endpoints that target population- and system-level endpoints. Doing so will remain consistent with four established steps of existing guidance: (1) establish clear protection goals early in the process; (2) consider how data collection using new methods will affect decisions, given all possibilities, and develop a decision plan a priori; (3) engage all relevant stakeholders in creating a robust, holistic conceptual model that incorporates plausible stressors that could affect the targets defined in the protection goals; and (4) embrace the need for iteration throughout the PF steps (recognizing that multiple passes may be required before agreeing on a feasible plan for the rest of the risk assessment). Integr Environ Assess Manag 2022;00:1-16. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

3.
Environ Sci Technol ; 56(6): 3514-3523, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35201763

RESUMO

Fish swimming behavior is a commonly measured response in aquatic ecotoxicology because behavior is considered a whole organism-level effect that integrates many sensory systems. Recent advancements in animal behavior models, such as hidden Markov chain models (HMM), suggest an improved analytical approach for toxicology. Using both new and traditional approaches, we examined the sublethal effects of PCB126 and methylmercury on yellow perch (YP) larvae (Perca flavescens) using three doses. Both approaches indicate larvae increase activity after exposure to either chemical. The middle methylmercury-dosed larvae showed multiple altered behavior patterns. First, larvae had a general increase in activity, typically performing more behavior states, more time swimming, and more swimming bouts per second. Second, when larvae were in a slow or medium swimming state, these larvae tended to switch between these states more often. Third, larvae swam slower during the swimming bouts. The upper PCB126-dosed larvae exhibited a higher proportion and a fast swimming state, but the total time spent swimming fast decreased. The middle PCB126-dosed larvae transitioned from fast to slow swimming states less often than the control larvae. These results indicate that developmental exposure to very low doses of these neurotoxicants alters YP larvae overall swimming behaviors, suggesting neurodevelopment alteration.


Assuntos
Compostos de Metilmercúrio , Percas , Animais , Larva , Cadeias de Markov , Compostos de Metilmercúrio/toxicidade , Percas/fisiologia , Natação
4.
Integr Comp Biol ; 62(1): 104-120, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35026028

RESUMO

The energetic demands of stressors like parasitism require hosts to reallocate energy away from normal physiological processes to survive. Life history theory provides predictions about how hosts will reallocate energy following parasitism, but few studies provide empirical evidence to test these predictions. We examined the sub-lethal effects of sea lamprey parasitism on lean and siscowet lake charr, two ecomorphs with different life history strategies. Leans are shorter lived, faster growing, and reach reproductive maturity earlier than siscowets. Following a parasitism event of 4 days, we assessed changes to energy allocation by monitoring endpoints related to reproduction, energy storage, and growth. Results indicate that lean and siscowet lake charr differ considerably in their response to parasitism. Severely parasitized leans slightly increased their reproductive effort and maintained growth and energy storage, consistent with expectations based on life history that leans are less likely to survive parasitism and have shorter lifespans than siscowets making investing in immediate reproduction more adaptive. Siscowets nearly ceased reproduction following severe parasitism and showed evidence of altered energy storage, consistent with a strategy that favors maximizing long-term reproductive success. These findings suggest that life history can be used to generalize stressor response between populations and can aid management efforts.


Assuntos
Petromyzon , Truta , Animais , Lagos , Reprodução/fisiologia , Simbiose
5.
Integr Comp Biol ; 61(6): 1991-2010, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34021749

RESUMO

Many biological systems across scales of size and complexity exhibit a time-varying complex network structure that emerges and self-organizes as a result of interactions with the environment. Network interactions optimize some intrinsic cost functions that are unknown and involve for example energy efficiency, robustness, resilience, and frailty. A wide range of networks exist in biology, from gene regulatory networks important for organismal development, protein interaction networks that govern physiology and metabolism, and neural networks that store and convey information to networks of microbes that form microbiomes within hosts, animal contact networks that underlie social systems, and networks of populations on the landscape connected by migration. Increasing availability of extensive (big) data is amplifying our ability to quantify biological networks. Similarly, theoretical methods that describe network structure and dynamics are being developed. Beyond static networks representing snapshots of biological systems, collections of longitudinal data series can help either at defining and characterizing network dynamics over time or analyzing the dynamics constrained to networked architectures. Moreover, due to interactions with the environment and other biological systems, a biological network may not be fully observable. Also, subnetworks may emerge and disappear as a result of the need for the biological system to cope with for example invaders or new information flows. The confluence of these developments renders tractable the question of how the structure of biological networks predicts and controls network dynamics. In particular, there may be structural features that result in homeostatic networks with specific higher-order statistics (e.g., multifractal spectrum), which maintain stability over time through robustness and/or resilience to perturbation. Alternative, plastic networks may respond to perturbation by (adaptive to catastrophic) shifts in structure. Here, we explore the opportunity for discovering universal laws connecting the structure of biological networks with their function, positioning them on the spectrum of time-evolving network structure, that is, dynamics of networks, from highly stable to exquisitely sensitive to perturbation. If such general laws exist, they could transform our ability to predict the response of biological systems to perturbations-an increasingly urgent priority in the face of anthropogenic changes to the environment that affect life across the gamut of organizational scales.


Assuntos
Algoritmos , Animais , Homeostase
6.
Environ Toxicol Chem ; 39(10): 1998-2007, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32667689

RESUMO

Coal ash contains numerous contaminants and is the focus of regulatory actions and risk assessments due to environmental spills. We exposed Daphnia magna to a gradient of coal ash contamination under high and low food rations to assess the sublethal effects of dietary exposures. Whereas exposure to contaminants resulted in significant reductions in growth and reproduction in daphnids, low, environmentally relevant food rations had a much greater effect on these endpoints. Environ Toxicol Chem 2020;39:1998-2007. © 2020 SETAC.


Assuntos
Cinza de Carvão/toxicidade , Daphnia/efeitos dos fármacos , Exposição Dietética/efeitos adversos , Poluentes Químicos da Água/toxicidade , Animais , Bioacumulação/efeitos dos fármacos , Cinza de Carvão/metabolismo , Daphnia/crescimento & desenvolvimento , Exposição Dietética/análise , Modelos Teóricos , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo
7.
Environ Toxicol Chem ; 38(9): 1850-1865, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31127958

RESUMO

An important goal in toxicology is the development of new ways to increase the speed, accuracy, and applicability of chemical hazard and risk assessment approaches. A promising route is the integration of in vitro assays with biological pathway information. We examined how the adverse outcome pathway (AOP) framework can be used to develop pathway-based quantitative models useful for regulatory chemical safety assessment. By using AOPs as initial conceptual models and the AOP knowledge base as a source of data on key event relationships, different methods can be applied to develop computational quantitative AOP models (qAOPs) relevant for decision making. A qAOP model may not necessarily have the same structure as the AOP it is based on. Useful AOP modeling methods range from statistical, Bayesian networks, regression, and ordinary differential equations to individual-based models and should be chosen according to the questions being asked and the data available. We discuss the need for toxicokinetic models to provide linkages between exposure and qAOPs, to extrapolate from in vitro to in vivo, and to extrapolate across species. Finally, we identify best practices for modeling and model building and the necessity for transparent and comprehensive documentation to gain confidence in the use of qAOP models and ultimately their use in regulatory applications. Environ Toxicol Chem 2019;38:1850-1865. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Ecotoxicologia/métodos , Substâncias Perigosas/toxicidade , Modelos Teóricos , Rotas de Resultados Adversos , Animais , Teorema de Bayes , Tomada de Decisões , Substâncias Perigosas/farmacocinética , Humanos , Projetos de Pesquisa , Medição de Risco , Toxicocinética
8.
Funct Ecol ; 33(5): 819-832, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32038063

RESUMO

1. The simple bioenergetic models in the family of Dynamic Energy Budget (DEB) consist of a small number of state equations quantifying universal processes, such as feeding, maintenance, development, reproduction and growth. Linking these organismal level processes to underlying suborganismal mechanisms at the molecular, cellular and organ level constitutes a major challenge for predictive ecological risk assessments. 2. Motivated by the need for process-based models to evaluate the impact of endocrine disruptors on ecologically relevant endpoints, this paper develops and evaluates two general modeling modules describing demand-driven feedback mechanisms exerted by gonads on the allocation of resources to production of reproductive matter within the DEB modeling framework. 3. These modules describe iteroparous, semelparous and batch-mode reproductive strategies. The modules have a generic form with both positive and negative feedback components; species and sex specific attributes of endocrine regulation can be added without changing the core of the modules. 4. We demonstrate that these modules successfully describe time-resolved measurements of wet weight of body, ovaries and liver, egg diameter and plasma content of vitellogenin and estradiol in rainbow trout (Oncorynchus mykiss) by fitting these models to published and new data, which require the estimation of less than two parameters per data type. 5. We illustrate the general applicability of the concept of demand-driven allocation of resources to reproduction as worked out in this paper by evaluating one of the modules with data on growth and seed production of an annual plant, the common bean (Phaseolis vulgaris).

9.
Environ Toxicol Chem ; 38(1): 12-26, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30570782

RESUMO

In 2007 the United States National Research Council (NRC) published a vision for toxicity testing in the 21st century that emphasized the use of in vitro high-throughput screening (HTS) methods and predictive models as an alternative to in vivo animal testing. In the present study we examine the state of the science of HTS and the progress that has been made in implementing and expanding on the NRC vision, as well as challenges to implementation that remain. Overall, significant progress has been made with regard to the availability of HTS data, aggregation of chemical property and toxicity information into online databases, and the development of various models and frameworks to support extrapolation of HTS data. However, HTS data and associated predictive models have not yet been widely applied in risk assessment. Major barriers include the disconnect between the endpoints measured in HTS assays and the assessment endpoints considered in risk assessments as well as the rapid pace at which new tools and models are evolving in contrast with the slow pace at which regulatory structures change. Nonetheless, there are opportunities for environmental scientists and policymakers alike to take an impactful role in the ongoing development and implementation of the NRC vision. Six specific areas for scientific coordination and/or policy engagement are identified. Environ Toxicol Chem 2019;38:12-26. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Medição de Risco , Animais , Poluentes Ambientais/análise , Humanos , Modelos Teóricos , Testes de Toxicidade
10.
Integr Environ Assess Manag ; 14(5): 615-624, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29870141

RESUMO

A working group at the National Institute for Mathematical and Biological Synthesis (NIMBioS) explored the feasibility of integrating 2 complementary approaches relevant to ecological risk assessment. Adverse outcome pathway (AOP) models provide "bottom-up" mechanisms to predict specific toxicological effects that could affect an individual's ability to grow, reproduce, and/or survive from a molecular initiating event. Dynamic energy budget (DEB) models offer a "top-down" approach that reverse engineers stressor effects on growth, reproduction, and/or survival into modular characterizations related to the acquisition and processing of energy resources. Thus, AOP models quantify linkages between measurable molecular, cellular, or organ-level events, but they do not offer an explicit route to integratively characterize stressor effects at higher levels of organization. While DEB models provide the inherent basis to link effects on individuals to those at the population and ecosystem levels, their use of abstract variables obscures mechanistic connections to suborganismal biology. To take advantage of both approaches, we developed a conceptual model to link DEB and AOP models by interpreting AOP key events as measures of damage-inducing processes affecting DEB variables and rates. We report on the type and structure of data that are generated for AOP models that may also be useful for DEB models. We also report on case studies under development that merge information collected for AOPs with DEB models and highlight some of the challenges. Finally, we discuss how the linkage of these 2 approaches can improve ecological risk assessment, with possibilities for progress in predicting population responses to toxicant exposures within realistic environments. Integr Environ Assess Manag 2018;14:615-624. © 2018 SETAC.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Ecologia , Modelos Teóricos , Medição de Risco
11.
Prev Vet Med ; 145: 110-120, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28903867

RESUMO

Bacterial kidney disease (BKD), caused by Renibacterium salmoninarum, threatens salmonid populations throughout the Northern hemisphere. Many fishery regulatory authorities require ongoing disease monitoring in hatcheries and spawning runs prior to gamete collection to prevent BKD outbreaks and spread. According to diagnostic protocols of the American Fisheries Society-Fish Health Section, monitoring for R. salmoninarum generally consists of lethal sampling of visceral organs from fish. However, non-lethal sampling would be preferable, especially for valuable broodstock or endangered species. In this study, non-lethal sampling methods were evaluated for their ability to detect R. salmoninarum in Chinook salmon (Oncorhynchus tshawytscha) that were experimentally infected via two different routes (e.g., intraperitoneal injection and waterborne immersion) to mimic acute and chronic disease courses. Non-lethal (e.g., blood, mucus, and a urine/feces mixture) and lethal (e.g., kidney and spleen homogenate) samples were collected from challenged and mock-challenged Chinook salmon and the presence of R. salmoninarum was assessed by culture on modified kidney disease medium, nested polymerase chain reaction (nPCR), and semi-quantitative enzyme-linked immunosorbent assay (ELISA). Sensitivity, specificity, and accuracy of lethal and non-lethal samples in detecting R. salmoninarum were calculated using receiver operating characteristic (ROC) analyses. For ROC analyses, true disease status was evaluated under two different assumptions: 1) that lethal samples represented the true disease status and 2) that all experimentally challenged fish were truly infected. We found that sensitivity and specificity of non-lethal samples depended upon time of sampling after experimental infection, sample type, and R. salmoninarum exposure route. Uro-fecal samples had the greatest potential as non-lethal samples compared to mucus and blood. In terms of future monitoring, combining lethal samples tested by ELISA assay with uro-fecal samples tested by nPCR could be the best strategy for detecting R. salmoninarum prevalence in a population as it reduces the overall number of fish required for sampling.


Assuntos
Doenças dos Peixes/diagnóstico , Infecções por Bactérias Gram-Positivas/veterinária , Micrococcaceae/isolamento & purificação , Salmão , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/veterinária , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Positivas/diagnóstico , Infecções por Bactérias Gram-Positivas/microbiologia , Curva ROC
12.
ACS Omega ; 2(8): 4870-4877, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28884165

RESUMO

Methylmercury (MeHg) is a pervasive and ubiquitous environmental neurotoxicant within aquatic ecosystems, known to alter behavior in fish and other vertebrates. This study sought to assess the behavioral effects of developmental MeHg exposure on larval yellow perch (Perca flavescens)-a nonmodel fish species native to the Great Lakes. Embryos were exposed to MeHg (0, 30, 100, 300, and 1000 nM) for 20 h and then reared to 25 days post fertilization (dpf) for analyses of spontaneous swimming, visual motor response (VMR), and foraging efficiency. MeHg exposures rendered total mercury (THg) body burdens of 0.02, 0.21, 0.95, 3.14, and 14.93 µg/g (wet weight). Organisms exposed to 1000 nM exhibited high mortality; thus, they were excluded from downstream behavioral analyses. All MeHg exposures tested were associated with a reduction in spontaneous swimming at 17 and 25 dpf. Exposure to 30 and 100 nM MeHg caused altered locomotor output during the VMR assay at 21 dpf, whereas exposure to 100 nM MeHg was associated with decreased foraging efficiency at 25 dpf. For the sake of comparison, the second-lowest exposure tested here rendered a THg burden that represents the permissible level of consumable fish in the United States. Moreover, this dose is reported in roughly two-thirds of consumable fish species monitored in the United States, according to the Food and Drug Administration. Although the THg body burdens reported here were higher than expected in the environment, our study is the first to analyze the effects of MeHg exposure on fundamental survival behaviors of yellow perch larvae and advances in the exploration of the ecological relevance of behavioral end points.

13.
BMC Genomics ; 17: 675, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27558222

RESUMO

BACKGROUND: The sea lamprey (Petromyzon marinus) is a jawless vertebrate that parasitizes fish as an adult and, with overfishing, was responsible for the decline in lake trout (Salvelinus namaycush) populations in the Great Lakes. While laboratory studies have looked at the rates of wounding on various fish hosts, there have been few investigations on the physiological effects of lamprey wounding on the host. In the current study, two morphotypes of lake trout, leans and siscowets, were parasitized in the laboratory by sea lampreys and the liver transcriptomes of parasitized and nonparasitized fish were analyzed by RNA-seq (DESeq2 and edgeR) to determine which genes and gene pathways (Ingenuity Pathway Analysis) were altered by lamprey parasitism. RESULTS: Overall, genes encoding molecules involved in catalytic (e.g., enzymatic) and binding activities (factors and regulators) predominated the regulated gene lists. In siscowets, the top upregulated gene was growth arrest and DNA-damage-inducible protein and for leans it was interleukin-18-binding protein. In leans, the most significantly downregulated gene was UDP-glucuronosyltransferase 2A2 - DESeq2 or phosphotriesterase related - edgeR. For siscowets, the top downregulated gene was C-C motif chemokine 19 - DESeq2 or GTP-binding protein Rhes - edgeR. Gene pathways associated with inflammatory-related responses or factors (cytokines, chemokines, oxidative stress, apoptosis) were regulated following parasitism in both morphotypes. However, pathways related to energy metabolism (glycolysis, gluconeogenesis, lipolysis, lipogenesis) were also regulated. These pathways or the intensity or direction (up/downregulation) of regulation were different between leans and siscowets. Finally, one of the most significantly downregulated pathways in both leans and siscowets was the kynurenine (tryptophan degradation) pathway. CONCLUSIONS: The results indicate a strong transcriptional response in the lake trout to lamprey parasitism that entails genes involved in the regulation of inflammation and cellular damage. Responses to energy utilization as well as hydromineral balance also occurred indicating an adjustment in the host to energy demands and osmotic imbalances during parasitism. Given the role of the kynurenine pathway in promoting immunotolerance in mammals, the downregulation observed in this pathway during parasitism may signify an attempt by the host to inhibit any feedback suppression of the immune response to the lamprey.


Assuntos
Proteínas de Peixes/genética , Perfilação da Expressão Gênica/métodos , Petromyzon/fisiologia , Análise de Sequência de RNA/métodos , Truta/parasitologia , Animais , Metabolismo Energético , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Cinurenina/metabolismo , Lagos , Truta/genética
14.
Ecotoxicology ; 25(6): 1136-49, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27154845

RESUMO

A 4.1 million m(3) coal ash release into the Emory and Clinch rivers in December 2008 at the Tennessee Valley Authority's Kingston Fossil Plant in east Tennessee, USA, prompted a long-term, large-scale biological monitoring effort to determine if there are chronic effects of this spill on resident biota. Because of the magnitude of the ash spill and the potential for exposure to coal ash-associated contaminants [e.g., selenium (Se), arsenic (As), and mercury (Hg)] which are bioaccumulative and may present human and ecological risks, an integrative, bioindicator approach was used. Three species of fish were monitored-bluegill (Lepomis macrochirus), redear sunfish (L. microlophus), and largemouth bass (Micropterus salmoides)-at ash-affected and reference sites annually for 5 years following the spill. On the same individual fish, contaminant burdens were measured in various tissues, blood chemistry parameters as metrics of fish health, and various condition and reproduction indices. A multivariate statistical approach was then used to evaluate relationships between contaminant bioaccumulation and fish metrics to assess the chronic, sub-lethal effects of exposure to the complex mixture of coal ash-associated contaminants at and around the ash spill site. This study suggests that while fish tissue concentrations of some ash-associated contaminants are elevated at the spill site, there was no consistent evidence of compromised fish health linked with the spill. Further, although relationships between elevated fillet burdens of ash-associated contaminants and some fish metrics were found, these relationships were not indicative of exposure to coal ash or spill sites. The present study adds to the weight of evidence from prior studies suggesting that fish populations have not incurred significant biological effects from spilled ash at this site: findings that are relevant to the current national discussions on the safe disposal of coal ash waste.


Assuntos
Vazamento de Resíduos Químicos , Cinza de Carvão , Monitoramento Ambiental , Reprodução/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Arsênio , Peixes , Mercúrio , Perciformes , Rios/química , Selênio , Tennessee , Poluentes Químicos da Água/análise
16.
Environ Sci Technol ; 50(9): 4808-16, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27023211

RESUMO

Methylmercury (MeHg) is an established neurotoxicant of concern to fish-eating organisms. While most studies have focused on the fish consumers, much less is known about the effects of MeHg on the fish themselves, especially following exposures to chronic and environmentally relevant scenarios. Here we evaluated the behavioral effects of developmental MeHg insult by exposing parental generations of zebrafish to an environmentally realistic MeHg dietary concentration (1 ppm) and two higher concentrations (3 and 10 ppm) throughout their whole life span. Upon reaching adulthood, their offspring were analyzed through a series of behavioral tests, including the visual-motor response (VMR) assay, analysis of spontaneous swimming and evaluation of foraging efficiency. The VMR assay identified decreased locomotor output in the 6 day postfertilization (dpf) offspring of fish exposed to 3 and 10 ppm MeHg. However, in a second test 7 dpf fish revealed an increase in locomotor activity in all MeHg exposures tested. Increases in locomotion continued to be observed until 16 dpf, which coincided with increased foraging efficiency. These results suggest an association between MeHg and hyperactivity, and imply that fish chronically exposed to MeHg in the wild may be vulnerable to predation.


Assuntos
Comportamento Animal/efeitos dos fármacos , Peixe-Zebra , Animais , Dieta , Compostos de Metilmercúrio/farmacologia , Natação
17.
Environ Toxicol Chem ; 35(5): 1159-71, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26387560

RESUMO

A dike failure at the Tennessee Valley Authority Kingston Fossil Plant in East Tennessee, United States, in December 2008, released approximately 4.1 million m(3) of coal ash into the Emory River. From 2009 through 2012, samples of mayfly nymphs (Hexagenia bilineata) were collected each spring from sites in the Emory, Clinch, and Tennessee Rivers upstream and downstream of the spill. Samples were analyzed for 17 metals. Concentrations of metals were generally highest the first 2 miles downstream of the spill, and then decreased with increasing distance from the spill. Arsenic, B, Ba, Be, Mo, Sb, Se, Sr, and V appeared to have strong ash signatures, whereas Co, Cr, Cu, Ni, and Pb appeared to be associated with ash and other sources. However, the concentrations for most of these contaminants were modest and are unlikely to cause widespread negative ecological effects. Trends in Hg, Cd, and Zn suggested little (Hg) or no (Cd, Zn) association with ash. Temporal trends suggested that concentrations of ash-related contaminants began to subside after 2010, but because of the limited time period of that analysis (4 yr), further monitoring is needed to verify this trend. The present study provides important information on the magnitude of contaminant exposure to aquatic receptors from a major coal ash spill, as well as spatial and temporal trends for transport of the associated contaminants in a large open watershed.


Assuntos
Cinza de Carvão/química , Fósseis , Insetos/química , Ninfa/química , Poluentes Químicos da Água/análise , Animais , Metais/análise , Rios , Tennessee , Estados Unidos
18.
PeerJ ; 3: e1123, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26246969

RESUMO

The rove beetle Triacrus dilatus is found in the Atlantic forest of South America and lives in the refuse piles of the paper wasp Agelaia vicina. Adults of T. dilatus are among the largest rove beetles, frequently measuring over 3 cm, and exhibit remarkable variation in body size. To examine sexual dimorphism and allometric relationships we measured the length of the left mandible, ocular distance and elytra. We were interested in determining if there are quantifiable differences between sexes, if there are major and minor forms within each sex and if males exhibit mandibular allometry. For all variables, a t-test was run to determine if there were significant differences between the sexes. Linear regressions were run to examine if there were significant relationships between the different measurements. A heterogeneity of slopes test was used to determine if there were significant differences between males and females. Our results indicated that males had significantly larger mandibles and ocular distances than females, but the overall body length was not significantly different between the sexes. Unlike most insects, both sexes showed positive linear allometric relationships for mandible length and head size (as measured by the ocular distance). We found no evidence of major and minor forms in either sex.

19.
Chemosphere ; 120: 778-92, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25456049

RESUMO

Adverse outcome pathways (AOPs) organize knowledge on the progression of toxicity through levels of biological organization. By determining the linkages between toxicity events at different levels, AOPs lay the foundation for mechanism-based alternative testing approaches to hazard assessment. Here, we focus on growth impairment in fish to illustrate the initial stages in the process of AOP development for chronic toxicity outcomes. Growth is an apical endpoint commonly assessed in chronic toxicity tests for which a replacement is desirable. Based on several criteria, we identified reduction in food intake to be a suitable key event for initiation of middle-out AOP development. To start exploring the upstream and downstream links of this key event, we developed three AOP case studies, for pyrethroids, selective serotonin reuptake inhibitors (SSRIs) and cadmium. Our analysis showed that the effect of pyrethroids and SSRIs on food intake is strongly linked to growth impairment, while cadmium causes a reduction in growth due to increased metabolic demands rather than changes in food intake. Locomotion impairment by pyrethroids is strongly linked to their effects on food intake and growth, while for SSRIs their direct influence on appetite may play a more important role. We further discuss which alternative tests could be used to inform on the predictive key events identified in the case studies. In conclusion, our work demonstrates how the AOP concept can be used in practice to assess critically the knowledge available for specific chronic toxicity cases and to identify existing knowledge gaps and potential alternative tests.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Ecotoxicologia/métodos , Poluentes Ambientais/efeitos adversos , Peixes/crescimento & desenvolvimento , Locomoção/efeitos dos fármacos , Modelos Biológicos , Testes de Toxicidade Crônica/métodos , Animais , Cádmio/efeitos adversos , Ecotoxicologia/tendências , Humanos , Piretrinas/efeitos adversos , Medição de Risco/métodos , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Especificidade da Espécie
20.
Chemosphere ; 120: 764-77, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25439131

RESUMO

To elucidate the effects of chemicals on populations of different species in the environment, efficient testing and modeling approaches are needed that consider multiple stressors and allow reliable extrapolation of responses across species. An adverse outcome pathway (AOP) is a concept that provides a framework for organizing knowledge about the progression of toxicity events across scales of biological organization that lead to adverse outcomes relevant for risk assessment. In this paper, we focus on exploring how the AOP concept can be used to guide research aimed at improving both our understanding of chronic toxicity, including delayed toxicity as well as epigenetic and transgenerational effects of chemicals, and our ability to predict adverse outcomes. A better understanding of the influence of subtle toxicity on individual and population fitness would support a broader integration of sublethal endpoints into risk assessment frameworks. Detailed mechanistic knowledge would facilitate the development of alternative testing methods as well as help prioritize higher tier toxicity testing. We argue that targeted development of AOPs supports both of these aspects by promoting the elucidation of molecular mechanisms and their contribution to relevant toxicity outcomes across biological scales. We further discuss information requirements and challenges in application of AOPs for chemical- and site-specific risk assessment and for extrapolation across species. We provide recommendations for potential extension of the AOP framework to incorporate information on exposure, toxicokinetics and situation-specific ecological contexts, and discuss common interfaces that can be employed to couple AOPs with computational modeling approaches and with evolutionary life history theory. The extended AOP framework can serve as a venue for integration of knowledge derived from various sources, including empirical data as well as molecular, quantitative and evolutionary-based models describing species responses to toxicants. This will allow a more efficient application of AOP knowledge for quantitative chemical- and site-specific risk assessment as well as for extrapolation across species in the future.


Assuntos
Ecotoxicologia/métodos , Meio Ambiente , Poluentes Ambientais/efeitos adversos , Epigênese Genética/efeitos dos fármacos , Pesquisa/tendências , Medição de Risco/métodos , Testes de Toxicidade Crônica/métodos , Animais , Ecotoxicologia/tendências , Humanos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...