Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38540859

RESUMO

Pulse Spray Drying (PSD) has potential as a sustainable means of skimmed milk powder (SMP) production. In this study, powders were obtained from PSD using different drying outlet temperatures (70, 80, 90 and 100 °C), and their characteristics were compared to those of traditional Spray Drying (SD). Native whey proteins were well preserved and Solubility Indexes were over 98% in all cases, despite powders obtained by PSD displaying lower solubility than the SD ones. No visual difference was observable in the powders (ΔE < 2); however, PSD powders were found to be yellower with a higher Browning Index. The drying technology did not have a significant effect on powder moisture content and bulk density. Particle size distribution and scanning electron microscopy images confirmed the presence of fine particles (<10 µm) in all samples that might have provided poor flowability and wetting behavior (overall Carr Index and Hausner ratio were 33.86 ± 3.25% and 1.52 ± 0.07, respectively). Higher amounts of agglomerated particles were found at low temperatures in the products processed with both technologies, but PSD samples showed a narrower particle size distribution and hollow particles with more wrinkles on the surface (probably due to the fast evaporation rate in PSD). Overall, PSD provided SMP with comparable physicochemical characteristics to SD and, once optimized at the industrial level, could offer significant advantages in terms of thermal efficiency without significant modification of the final product quality.

2.
Food Chem X ; 21: 101200, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38379800

RESUMO

In this study, fava bean protein (FPI) was isolated from flours prepared from dehulled seeds and compared to FPI extracted from whole flours; in the latter case, flours were prepared either by dry- or wet-milling. Significant differences in composition and functionality were observed between the three FPIs produced. Dehulling maximized protein purity, oil-absorption capacity, solubility, foamablity and minimized both starchy and non-starchy carbohydrate contents. Protein isolated from wet-milled whole beans provided higher mass and extraction yields, better water-absorption capacity, and exhibited higher surface charge (zeta potential) compared to other samples. The protein extracted from dry-milled whole seed exhibited a higher least gelation concentration, emulsifying activity and zeta value compared to its dehulled counterpart. Dehulling was also found to be a useful process to increase the lightness/whiteness of protein powder. Overall, the present findings provide useful technological information relating to the production of FPI with and without a dehulling step.

3.
J Dairy Sci ; 106(10): 6597-6622, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37532625

RESUMO

The objective of this study was to examine the impact of increasing proportions of grazed pasture in the diet on the composition, quality, and functionality of bovine milk across a full lactation. Fifty-four spring-calving cows were randomly assigned to 1 of 3 groups (n = 18), blocked on the basis of mean calving date (February 15, 2020 ± 0.8 d), pre-experimental daily milk yield (24.70 ± 3.70 kg), milk solids yield (2.30 ± 0.27 kg), lactation number (3.10 ± 0.13), and economic breeding index (182 ± 19). Raw milk samples were obtained weekly from each group between March and November 2020. Group 1 (GRS) consumed perennial ryegrass and was supplemented with 5% concentrates (dry matter basis); group 2 was maintained indoors and consumed a total mixed ration (TMR) diet consisting of maize silage, grass silage, and concentrates; and group 3 consumed a partial mixed ration diet (PMR), rotating between perennial ryegrass during the day and indoor TMR feeding at night. Raw milk samples consisted of a pooled morning and evening milking and were analyzed for gross composition, free amino acids, fatty acid composition, heat coagulation time, color, fat globule size, and pH. The TMR milks had a significantly higher total solids, lactose, protein, and whey protein as a proportion of protein content compared with both GRS and PMR milks. The GRS milks demonstrated a significantly lower somatic cell count (SCC), but a significantly higher pH and b*-value than both TMR and PMR milks. The PMR milks exhibited significantly lower total solids and fat content, but also demonstrated significantly higher SCC and total free amino acid content compared with GRS and TMR. Partial least squares discriminant analysis of fatty acid profiles displayed a distinct separation between GRS and TMR samples, while PMR displayed an overlap between both GRS and TMR groupings. Variable importance in projection analysis identified conjugated linoleic acid cis-9,trans-11, C18:2n-6 cis, C18:3n-3, C11:0, and C18:2n-6 trans as the largest contributors to the variation between the diets. Milk fats derived from GRS diets exhibited the highest proportion of unsaturated fats and higher unsaturation, health-promoting, and desaturase indices. The lowest proportions of saturated fats and the lowest atherogenic index were also exhibited by GRS-derived milk fats. This work highlights the positive influence of grass-fed milk for human consumption through its more nutritionally beneficial fatty acid profile, despite the highest milk solid percentages derived from TMR feeding systems. Furthermore, this study demonstrates the proportional response of previously highlighted biomarkers of pasture feeding to the proportion of pasture in the cow's diet.


Assuntos
Ração Animal , Leite , Animais , Bovinos , Feminino , Ração Animal/análise , Dieta/veterinária , Ácidos Graxos/análise , Lactação/fisiologia , Leite/química , Valor Nutritivo , Melhoramento Vegetal
4.
Compr Rev Food Sci Food Saf ; 22(4): 2652-2677, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37070222

RESUMO

Permeates are generated in the dairy industry as byproducts from the production of high-protein products (e.g., whey or milk protein isolates and concentrates). Traditionally, permeate was disposed of as waste or used in animal feed, but with the recent move toward a "zero waste" economy, these streams are being recognized for their potential use as ingredients, or as raw materials for the production of value-added products. Permeates can be added directly into foods such as baked goods, meats, and soups, for use as sucrose or sodium replacers, or can be used in the production of prebiotic drinks or sports beverages. In-direct applications generally utilize the lactose present in permeate for the production of higher value lactose derivatives, such as lactic acid, or prebiotic carbohydrates such as lactulose. However, the impurities present, short shelf life, and difficulty handling these streams can present challenges for manufacturers and hinder the efficiency of downstream processes, especially compared to pure lactose solutions. In addition, the majority of these applications are still in the research stage and the economic feasibility of each application still needs to be investigated. This review will discuss the wide variety of nondairy, food-based applications of milk and whey permeates, with particular focus on the advantages and disadvantages associated with each application and the suitability of different permeate types (i.e., milk, acid, or sweet whey).


Assuntos
Lactose , Soro do Leite , Animais , Lactose/metabolismo , Leite , Proteínas do Leite , Ração Animal
5.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36876476

RESUMO

Worldwide, many production supply chains generate a considerable amount of legume by-products (e.g., leaves, husks, broken seeds, defatted cakes). These wastes can be revalorized to develop sustainable protein ingredients, with positive economic and environmental effects. To separate protein from legume by-products, a broad spectrum of conventional (e.g., alkaline solubilization, isoelectric precipitation, membrane filtration) and novel methodologies (e.g., ultrasound, high-pressure homogenization, enzymatic approaches) have been studied. In this review, these techniques and their efficiency are discussed in detail. The present paper also provides an overview of the nutritional and functional characteristics of proteins extracted from legume by-products. Moreover, existing challenges and limitations associated with the valorization of by-product proteins are highlighted, and future perspectives are proposed.

6.
Foods ; 10(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809356

RESUMO

Seasonal calving, pasture-based dairy systems are widely practiced in countries with a temperate climate and plentiful rainfall such as Ireland and New Zealand. This approach maximizes milk production from pasture and, consequently, is a low-cost, low-input dairy production system. On the other hand, the majority of global milk supply is derived from high input indoor total mixed ration systems where seasonal calving is not practiced due to the dependence on ensiled silages, grains and concentrated feeds, which are available year-round. Synchronous changes in the macro and micronutrients in milk are much more noticeable as lactation progresses through early, mid and late stages in seasonal systems compared to non-seasonal systems-which can have implications on the processability and functionality of milk.

7.
Foods ; 9(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942522

RESUMO

The α-relaxation temperatures (Tα), derived from the storage and loss moduli using dynamic mechanical analysis (DMA), were compared to methods for stickiness and glass transition determination for a selection of model whey protein concentrate (WPC) powders with varying protein contents. Glass transition temperatures (Tg) were determined using differential scanning calorimetry (DSC), and stickiness behavior was characterized using a fluidization technique. For the lower protein powders (WPC 20 and 35), the mechanical Tα determined from the storage modulus of the DMA (Tα onset) were in good agreement with the fluidization results, whereas for higher protein powders (WPC 50 and 65), the fluidization results compared better to the loss modulus results of the DMA (Tα peak). This study demonstrates that DMA has the potential to be a useful technique to complement stickiness characterization of dairy powders by providing an increased understanding of the mechanisms of stickiness.

8.
Foods ; 9(8)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32726926

RESUMO

The objective of this study was to determine the effect of seasonal variation on milk composition and establish an algorithm to predict density based on milk composition to enable the calculation of season-based density conversion calculations. A total of 1035 raw whole milk samples were collected from morning and evening milking of 60 spring-calving individual cows of different genetic groups, namely Jersey, Elite HF (Holstein-Friesian) and National Average HF, once every two weeks for a period of 9 months (March-November, 2018). The average mean and standard deviation for milk compositional traits were 4.72 ± 1.30% fat, 3.85 ± 0.61% protein and 4.69 ± 0.30% lactose and density was estimated at 1.0308 ± 0.002 g/cm3. The density of the milk samples was evaluated using three methods: a portable density meter, DMA 35; a standard desktop version, DMA 4500M; and an Association of Official Agricultural Chemists (AOAC) method using 100-mL glass pycnometers. Statistical analysis using a linear mixed model showed a significant difference in density of milk samples (p < 0.05) across seasonal and compositional variations adjusted for the effects of days in milk, parity, the feeding treatment, the genetic group and the measurement technique. The mean density values and standard error of mean estimated for milk samples in each season, i.e., spring, summer and autumn were 1.0304 ± 0.00008 g/cm3, 1.0314 ± 0.00005 g/cm3 and 1.0309 ± 0.00007 g/cm3, respectively.

9.
Foods ; 9(1)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941012

RESUMO

The physical properties of 15 commercially available infant formulas (IF) and follow-on (FO) formulas were analysed. Powders made with intact milk proteins were classified into two groups; Type I-homogenous mixtures of milk powder particles (n = 6); and Type II-heterogeneous mixtures of milk powder particles and tomahawk-shaped α-lactose monohydrate crystals (n = 6). Powders made using hydrolysed proteins were classified as Type III powders (n = 3). Type II powders exhibited similar flow characteristics to Type I powders despite having significantly (p < 0.05) smaller particle size, lower circularity, and greater elongation. Type III powders exhibited lowest particles size, highest surface free fat, and poorest flow properties (p < 0.05 for all). Upon reconstitution of powders (12.5% w/w), no significant difference (p < 0.05) in apparent viscosity was observed between Type I and II powders. Reconstituted Type III powders had relatively poor stability to separation compared to Type I and II powders, caused by large starch granules and/or poor emulsification by hydrolysed proteins. Overall, this study illustrated the range of physical behaviour and structures present in commercial IF powders. In particular, the effect of dry addition of lactose and the hydrolysis of protein were found to have major effects on physical properties.

10.
Foods ; 8(9)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31455046

RESUMO

Tryptic hydrolysis of whey protein isolate under specific incubation conditions including a relatively high enzyme:substrate (E:S) ratio of 1:10 is known to preferentially hydrolyse ß-lactoglobulin (ß-LG), while retaining the other major whey protein fraction, i.e., α-lactalbumin (α-LA) mainly intact. An objective of the present work was to explore the effects of reducing E:S (1:10, 1:30, 1:50, 1:100) on the selective hydrolysis of ß-LG by trypsin at pH 8.5 and 25 °C in a 5% (w/v) WPI solution during incubation periods ranging from 1 to 7 h. In addition, the use of a pilot-scale continuous high-temperature, short-time (HTST) heat exchanger with an extended holding time (EHT) of 5 min as a means of inactivating trypsin to terminate hydrolysis was compared with laboratory-based acidification to 90% ß-LG hydrolysis after respective incubation periods of 4 and 6 h, with <5% hydrolysis of α-LA in the case of 1:50. Continuous HTST-EHT treatment was shown to be an effective inactivation process allowing for the maintenance of substrate selectivity. However, HTST-EHT heating resulted in protein aggregation, which negatively impacts the downstream recovery of intact α-LA. An optimum E:S was determined to be 1:50, with an incubation time ranging from 3 h to 7 h leading to 90% ß-LG hydrolysis and minimal degradation of α-LA. Alternative batch heating by means of a water bath to inactivate trypsin caused considerable digestion of α-LA, while acidification to

11.
J Nutr ; 149(1): 88-97, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30608606

RESUMO

Background: Dietary modifications can contribute to improved pancreatic ß cell function and enhance glycemic control. Objectives: The objectives of this study were as follows: 1) to investigate the potential of milk protein hydrolysates to modulate postprandial glucose response; 2) to assess individual responses; and 3) to explore the inter- and intraindividual reproducibility of the response. Methods: A 14-d randomized crossover study investigated interstitial glucose levels of participants in response to 12% w/v milk protein drinks (intact caseinate and casein hydrolysate A and B) consumed in random order with a 2-d washout between treatments. Milk protein drinks were consumed immediately prior to study breakfast and evening meals. Twenty participants (11 men, 9 women) aged 50 ± 8 y with a body mass index (in kg/m2) of 30.2 ± 3.1 were recruited. Primary outcome was glucose levels assessed at 15-min intervals with the use of glucose monitors. Results: Repeated-measures ANOVA revealed that for breakfast there was a significant difference across the 3 treatment groups (P = 0.037). The ability to reduce postprandial glucose was specific to casein hydrolysate B in comparison with intact caseinate (P = 0.039). However, despite this significant difference, further examination revealed that only 3 out of 18 individuals were classified as responders (P < 0.05). High intraclass correlation coefficients were obtained for glucose response to study meals (intraclass correlation coefficient: 0.892 for breakfast with intact caseinate). The interindividual CVs were higher than the intraindividual CVs. Mean inter- and intraindividual CVs were 19.4% and 5.7%, respectively, for breakfast with intact caseinate. Conclusion: Ingestion of a specific casein hydrolysate successfully reduced the postprandial glucose response; however, at an individual level only 3 participants were classified as responders, highlighting the need for precision nutrition. Exploration of high interindividual responses to nutrition interventions is needed, in combination with the development of precision nutrition, potentially through an n-of-1 approach. This clinical trial was registered as ISRCTN61079365 (https://www.isrctn.com/).


Assuntos
Glicemia/efeitos dos fármacos , Proteínas do Leite/farmacologia , Terapia Nutricional , Sobrepeso , Medicina de Precisão , Adulto , Estudos Cross-Over , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Leite/administração & dosagem
12.
Int J Mol Sci ; 19(9)2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30223587

RESUMO

Recent times have seen an increasing move towards harnessing the health-promoting benefits of food and dietary constituents while providing scientific evidence to substantiate their claims. In particular, the potential for bioactive protein hydrolysates and peptides to enhance health in conjunction with conventional pharmaceutical therapy is being investigated. Dairy-derived proteins have been shown to contain bioactive peptide sequences with various purported health benefits, with effects ranging from the digestive system to cardiovascular circulation, the immune system and the central nervous system. Interestingly, the ability of dairy proteins to modulate metabolism and appetite has recently been reported. The ghrelin receptor (GHSR-1a) is a G-protein coupled receptor which plays a key role in the regulation of food intake. Pharmacological manipulation of the growth hormone secretagogue receptor-type 1a (GHSR-1a) receptor has therefore received a lot of attention as a strategy to combat disorders of appetite and body weight, including age-related malnutrition and the progressive muscle wasting syndrome known as cachexia. In this study, a milk protein-derivative is shown to increase GHSR-1a-mediated intracellular calcium signalling in a concentration-dependent manner in vitro. Significant increases in calcium mobilisation were also observed in a cultured neuronal cell line heterologously expressing the GHS-R1a. In addition, both additive and synergistic effects were observed following co-exposure of GHSR-1a to both the hydrolysate and ghrelin. Subsequent in vivo studies monitored standard chow intake in healthy male and female Sprague-Dawley rats after dosing with the casein hydrolysate (CasHyd). Furthermore, the provision of gastro-protected oral delivery to the bioactive in vivo may aid in the progression of in vitro efficacy to in vivo functionality. In summary, this study reports a ghrelin-stimulating bioactive peptide mixture (CasHyd) with potent effects in vitro. It also provides novel and valuable translational data supporting the potential role of CasHyd as an appetite-enhancing bioactive. Further mechanistic studies are required in order to confirm efficacy as a ghrelinergic bioactive in susceptible population groups.


Assuntos
Caseínas/metabolismo , Ingestão de Alimentos , Expressão Gênica , Receptores de Grelina/genética , Animais , Cálcio/metabolismo , Caseínas/química , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Ativação Enzimática , Estabilidade Enzimática , Feminino , Grelina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Masculino , Imagem Molecular/métodos , Ratos , Receptores de Grelina/metabolismo
13.
Cardiovasc Eng Technol ; 8(3): 255-272, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28707187

RESUMO

This review examines four imaging modalities; ultrasound (US), digital subtraction angiography (DSA), magnetic resonance imaging (MRI) and computed tomography (CT), that have common or potential applications in vascular access (VA). The four modalities are reviewed under their primary uses, techniques, advantages and disadvantages, and future directions that are specific to VA. Currently, US is the most commonly used modality in VA because it is cheaper (relative to other modalities), accessible, non-ionising, and does not require the use of contrast agents. DSA is predominantly only performed when an intervention is indicated. MRI is limited by its cost and the time required for image acquisition that mainly confines it to the realm of research where high resolution is required. CT's short acquisition times and high resolution make it useful as a problem-solving tool in complex cases, although accessibility can be an issue. All four imaging modalities have advantages and disadvantages that limit their use in this particular patient cohort. Current imaging in VA comprises an integrated approach with each modality providing particular uses dependent on their capabilities. MRI and CT, which currently have limited use, may have increasingly important future roles in complex cases where detailed analysis is required.


Assuntos
Angiografia Digital/métodos , Imageamento por Ressonância Magnética/métodos , Diálise Renal/métodos , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia/métodos , Fístula Arteriovenosa/diagnóstico por imagem , Prótese Vascular , Cateteres Venosos Centrais , Humanos , Dispositivos de Acesso Vascular , Grau de Desobstrução Vascular/fisiologia
14.
Ann Biomed Eng ; 44(2): 508-22, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26572877

RESUMO

Oxygen deficiency, known as hypoxia, in arterial walls has been linked to increased intimal hyperplasia, which is the main adverse biological process causing in-stent restenosis. Stent implantation has significant effects on the oxygen transport into the arterial wall. Elucidating these effects is critical to optimizing future stent designs. In this study the most advanced oxygen transport model developed to date was assessed in two test cases and used to compare three coronary stent designs. Additionally, the predicted results from four simplified blood oxygen transport models are compared in the two test cases. The advanced model showed good agreement with experimental measurements within the mass-transfer boundary layer and at the luminal surface; however, more work is needed in predicting the oxygen transport within the arterial wall. Simplifying the oxygen transport model within the blood flow produces significant errors in predicting the oxygen transport in arteries. This study can be used as a guide for all future numerical studies in this area and the advanced model could provide a powerful tool in aiding design of stents and other cardiovascular devices.


Assuntos
Circulação Coronária , Vasos Coronários/fisiopatologia , Modelos Cardiovasculares , Stents , Animais , Transporte Biológico Ativo , Vasos Coronários/metabolismo , Humanos , Oxigênio
15.
J Agric Food Chem ; 62(43): 10585-93, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25251787

RESUMO

Understanding macronutrient interactions during heating is important for controlling viscosity during infant milk formula (IMF) manufacture. Thermal behavior of macronutrients (casein, whey, lactose, fat) was studied, in isolation and combination, over a range of concentrations. Addition of phosphocasein to whey protein solutions elevated denaturation temperature (Td) of ß-lactoglobulin and the temperature at which viscosity started to increase upon heating (Tv). Secondary structural changes in whey proteins occurred at higher temperatures in dispersions containing phosphocasein; the final extent of viscosity increase was similar to that of whey protein alone. Addition of lactose to whey protein solutions delayed secondary structural changes, increased Td and Tv, and reduced post heat treatment viscosity. This study demonstrated that heat-induced changes in IMF associated with whey protein (denaturation, viscosity) are not only a function of concentration but are also dependent on interactions between macronutrients.


Assuntos
Fórmulas Infantis/química , Caseínas/química , Gorduras/química , Temperatura Alta , Lactose/química , Proteínas do Leite/química , Valor Nutritivo , Viscosidade , Proteínas do Soro do Leite
16.
Med Eng Phys ; 36(8): 1047-56, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24953569

RESUMO

In many computational fluid dynamics (CFD) studies of stented vessel haemodynamics, the geometry of the stented vessel is described using non-deformed (NDF) geometrical models. These NDF models neglect complex physical features, such as stent and vessel deformation, which may have a major impact on the haemodynamic environment in stented coronary arteries. In this study, CFD analyses were carried out to simulate pulsatile flow conditions in both NDF and realistically-deformed (RDF) models of three stented coronary arteries. While the NDF models were completely idealised, the RDF models were obtained from nonlinear structural analyses and accounted for both stent and vessel deformation. Following the completion of the CFD analyses, major differences were observed in the time-averaged wall shear stress (TAWSS), time-averaged wall shear stress gradient (TAWSSG) and oscillatory shear index (OSI) distributions predicted on the luminal surface of the artery for the NDF and RDF models. Specifically, the inclusion of stent and vessel deformation in the CFD analyses resulted in a 32%, 30% and 31% increase in the area-weighted mean TAWSS, a 3%, 7% and 16% increase in the area-weighted mean TAWSSG and a 21%, 13% and 21% decrease in the area-weighted mean OSI for Stents A, B and C, respectively. These results suggest that stent and vessel deformation are likely to have a major impact on the haemodynamic environment in stented coronary arteries. In light of this observation, it is recommended that these features are considered in future CFD studies of stented vessel haemodynamics.


Assuntos
Prótese Vascular , Circulação Coronária/fisiologia , Vasos Coronários/fisiologia , Hemodinâmica/fisiologia , Modelos Cardiovasculares , Stents , Algoritmos , Simulação por Computador , Desenho de Equipamento , Humanos , Hidrodinâmica , Dinâmica não Linear , Periodicidade , Resistência ao Cisalhamento
17.
Cancers (Basel) ; 3(1): 1329-50, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24212664

RESUMO

Acute myeloid leukemia (AML) is an aggressive stem cell malignancy that is difficult to treat. There are limitations to the current treatment regimes especially after disease relapse, and therefore new therapeutic agents are urgently required which can overcome drug resistance whilst avoiding unnecessary toxicity. Among newer targeted agents, both tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and proteasome inhibitors show particular promise. In this report we show that a combination of the proteasome inhibitor bortezomib and TRAIL is effective against AML cell lines, in particular, AML cell lines displaying myelomonocytic/monocytic phenotype (M4/M5 AML based on FAB classification), which account for 20-30% of AML cases. We show that the underlying mechanism of sensitization is at least in part due to bortezomib mediated downregulation of c-FLIP and XIAP, which is likely to be regulated by NF-κB. Blockage of NF-κB activation with BMS-345541 equally sensitized myelomonocytic AML cell lines and primary AML blasts to TRAIL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...