Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6841, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100851

RESUMO

Humans have a larger energy budget than great apes, allowing the combination of the metabolically expensive traits that define our life history. This budget is ultimately related to the cardiac output, the product of the blood pumped from the ventricle and the number of heart beats per minute, a measure of the blood available for the whole organism physiological activity. To show the relationship between cardiac output and energy expenditure in hominid evolution, we study a surrogate measure of cardiac output, the aortic root diameter, in humans and great apes. When compared to gorillas and chimpanzees, humans present an increased body mass adjusted aortic root diameter. We also use data from the literature to show that over the human lifespan, cardiac output and total energy expenditure follow almost identical trajectories, with a marked increase during the period of brain growth, and a plateau during most of the adult life. The limited variation of adjusted cardiac output with sex, age and physical activity supports the compensation model of energy expenditure in humans. Finally, we present a first study of cardiac output in the skeleton through the study of the aortic impression in the vertebral bodies of the spine. It is absent in great apes, and present in humans and Neanderthals, large-brained hominins with an extended life cycle. An increased adjusted cardiac output, underlying higher total energy expenditure, would have been a key process in human evolution.


Assuntos
Hominidae , Homem de Neandertal , Adulto , Animais , Humanos , Hominidae/fisiologia , Gorilla gorilla , Pan troglodytes , Aorta , Débito Cardíaco , Evolução Biológica
2.
J Zoo Wildl Med ; 42(4): 572-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22204050

RESUMO

A total of 163 echocardiographic studies on western lowland gorillas (Gorilla gorilla gorilla) were submitted for evaluation; 140 from 99 animals were suitable for analysis. Of these, 81 studies (42 studies from 35 males ranging in age from 11-41+ yr and 39 studies from 31 females ranging in age from 11-41+ yr) are reported here. Three studies from 3 females and 56 studies from 30 males were excluded from this report due to cardiac abnormalities. Cardiac parameters measured were aortic root (Ao Rt) diameter and left atrial (L atrium) size. Left ventricular (LV) measurements included left ventricular internal diameter in systole (LVID(s)) and diastole (LVID(d)) as well as diastolic septal (IVS) and posterior wall thickness (LVPW). Values considered to be normal in females > 11 yr of age were: Ao Rt < 3.5 cm, L atrium < 4.0 cm, LVID(d) < 5.0 cm, IVS < 1.4 cm, LVPW < 1.4 cm, and ejection fraction (EF) > 60%. The data from male gorillas show a separation in animals based on three cardiac parameters: systolic function, LV cavity size, and LV wall thickness. Male gorillas > 11 yr of age fall into two groups; unaffected and affected. Unaffected animals are defined as those with no echocardiographic abnormalities and a consistent Ao Rt of < 4.0 cm, LVID(d) of < 6.0 cm, IVS and LVPW of <1.5 cm, and an EF of > 58%. The affected group consisted of male gorillas that exhibited changes in echocardiographic parameters representing the presence of cardiovascular disease. The results determined in this database, gathered from data collected from 1999-2009, suggest a sex-based difference between males and females with predominantly males demonstrating evidence of cardiac disease. The most striking finding seen in this study is that of progressive LV hypertrophy and depressed LV EF in affected adult male gorillas.


Assuntos
Ecocardiografia/veterinária , Gorilla gorilla/anatomia & histologia , Gorilla gorilla/fisiologia , Coração/anatomia & histologia , Coração/fisiologia , Animais , Feminino , Masculino
3.
J Zoo Wildl Med ; 37(3): 219-33, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17319119

RESUMO

Nonhuman primates can be naturally infected with a plethora of viruses with zoonotic potential, including retroviruses. These simian viruses present risks to both captive nonhuman primate populations and persons exposed to nonhuman primates. Simian retroviruses, including simian immunodeficiency virus, simian type D retrovirus, simian T-lymphotropic virus, and gibbon ape leukemia virus, have been shown to cause clinical disease in nonhuman primates. In contrast, simian foamy virus, a retrovirus that is highly prevalent in most nonhuman primates, has not been associated with clinical disease in naturally infected primates. Although it has been shown that human retrovirus infections with human T-lymphotropic virus and human immunodeficiency virus originated through multiple independent introductions of simian retroviruses into human populations that then spread globally, little is known about the frequency of such zoonotic events. In this article, exogenous simian retroviruses are reviewed as a concern for zoo and wildlife veterinarians, primate handlers, other persons in direct contact with nonhuman primates, and other nonhuman primates in a collection. The health implications for individual animals as well as managed populations in zoos and research institutions are discussed, the cross-species transmission and zoonotic disease potential of simian retroviruses are described, and suggestions for working safely with nonhuman primates are provided.


Assuntos
Primatas/virologia , Infecções por Retroviridae/transmissão , Retrovirus dos Símios/patogenicidade , Infecções Tumorais por Vírus/transmissão , Zoonoses , Animais , Humanos , Infecções por Retroviridae/epidemiologia , Infecções por Retroviridae/veterinária , Fatores de Risco , Especificidade da Espécie , Infecções Tumorais por Vírus/epidemiologia , Infecções Tumorais por Vírus/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...