Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 9: 850538, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35274014

RESUMO

A progressive defect in the energy generation pathway is implicated in multiple aging-related diseases, including cardiovascular conditions and Alzheimer's Disease (AD). However, evidence of the pathogenesis of cardiac dysfunction in AD and the associations between the two organ diseases need further elucidation. This study aims to characterize cellular defects resulting in decreased cardiac function in AD-model. 5XFAD mice, a strain expressing five mutations in human APP and PS1 that shows robust Aß production with visible plaques at 2 months and were used in this study as a model of AD. 5XFAD mice and wild-type (WT) counterparts were subjected to echocardiography at 2-, 4-, and 6-month, and 5XFAD had a significant reduction in cardiac fractional shortening and ejection fraction compared to WT. Additionally, 5XFAD mice had decreased observed electrical signals demonstrated as decreased R, P, T wave amplitudes. In isolated cardiomyocytes, 5XFAD mice showed decreased fraction shortening, rate of shortening, as well as the degree of transient calcium influx. To reveal the mechanism by which AD leads to cardiac systolic dysfunction, the immunoblotting analysis showed increased activation of AMP-activated protein kinase (AMPK) in 5XFAD left ventricular and brain tissue, indicating altered energy metabolism. Mito Stress Assays examining mitochondrial function revealed decreased basal and maximal oxygen consumption rate, as well as defective pyruvate dehydrogenase activity in the 5XFAD heart and brain. Cellular inflammation was provoked in the 5XFAD heart and brain marked by the increase of reactive oxygen species accumulation and upregulation of inflammatory mediator activities. Finally, AD pathological phenotype with increased deposition of Aß and defective cognitive function was observed in 6-month 5XFAD mice. In addition, elevated fibrosis was observed in the 6-month 5XFAD heart. The results implicated that AD led to defective mitochondrial function, and increased inflammation which caused the decrease in contractility of the heart.

2.
Neuropharmacology ; 208: 108980, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35122838

RESUMO

Compulsive eating is an overlapping construct with binge eating that shares many characteristics with substance use disorders. Compulsive eating may impact millions of Americans; presenting in some cases of binge eating disorders, overweight/obesity, and among individuals who have not yet been diagnosed with a recognized eating disorder. To study the behavioral and neurobiological underpinnings of compulsive eating, we employ a published rodent model using cyclic intermittent access to a palatable diet to develop a self-imposed binge-withdrawal cycle. Here, we further validated this model of compulsive eating in female Wistar rats, through the lens of behavioral economic analyses and observed heightened demand intensity, inelasticity and essential value as well as increased food-seeking during extinction. Using electrophysiological recordings in the anterior insular cortex, a region previously implicated in modulating compulsive-like eating in intermittent access models, we observed functional adaptations of pyramidal neurons. Within the same neurons, application of leptin led to further functional adaptations, suggesting a previously understudied, extrahypothalamic role of leptin in modulating feeding-related cortical circuits. Collectively, the findings suggest that leptin may modulate food-related motivation or decision-making via a plastic cortical circuit that is influenced by intermittent access to a preferred diet. These findings warrant further study of whether behavioral economics analysis of compulsive eating can impact disordered eating outcomes in humans and of the translational relevance of a leptin-sensitive anterior insular circuit implicated in these behaviors.


Assuntos
Comportamento Alimentar , Leptina , Animais , Comportamento Compulsivo , Comportamento Alimentar/fisiologia , Feminino , Humanos , Células Piramidais , Ratos , Ratos Wistar
3.
Aging Cell ; 20(7): e13419, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34216536

RESUMO

Sirtuin1 (SIRT1) and Sirtuin3 (SIRT3) protects cardiac function against ischemia/reperfusion (I/R) injury. Mitochondria are critical in response to myocardial I/R injury as disturbance of mitochondrial dynamics contributes to cardiac dysfunction. It is hypothesized that SIRT1 and SIRT3 are critical components to maintaining mitochondria homeostasis especially mitochondrial dynamics to exert cardioprotective actions under I/R stress. The results demonstrated that deficiency of SIRT1 and SIRT3 in aged (24-26 months) mice hearts led to the exacerbated cardiac dysfunction in terms of cardiac systolic dysfunction, cardiomyocytes contractile defection, and abnormal cardiomyocyte calcium flux during I/R stress. Moreover, the deletion of SIRT1 or SIRT3 in young (4-6 months) mice hearts impair cardiomyocyte contractility and shows aging-like cardiac dysfunction upon I/R stress, indicating the crucial role of SIRT1 and SIRT3 in protecting myocardial contractility from I/R injury. The biochemical and seahorse analysis showed that the deficiency of SIRT1/SIRT3 leads to the inactivation of AMPK and alterations in mitochondrial oxidative phosphorylation (OXPHOS) that causes impaired mitochondrial respiration in response to I/R stress. Furthermore, the remodeling of the mitochondria network goes together with hypoxic stress, and mitochondria undergo the processes of fusion with the increasing elongated branches during hypoxia. The transmission electron microscope data showed that cardiac SIRT1/SIRT3 deficiency in aging alters mitochondrial morphology characterized by the impairment of mitochondria fusion under I/R stress. Thus, the age-related deficiency of SIRT1/SIRT3 in the heart affects mitochondrial dynamics and respiration function that resulting in the impaired contractile function of cardiomyocytes in response to I/R.


Assuntos
Dinâmica Mitocondrial/genética , Miócitos Cardíacos/metabolismo , Sirtuína 1/deficiência , Sirtuína 3/deficiência , Envelhecimento , Animais , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...