Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 33(3): e2800, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36546663

RESUMO

Livestock production in drylands requires consideration of the ecological applications of ecohydrological redistribution of water. Intensive cattle trampling and the associated increase of surface runoff are common concerns for rangeland productivity and sustainability. Here, we highlight a regional livestock production system in which cattle trails and trampling surrounding an artificial impoundment are purposely managed to enhance redistribution and availability of water for cattle drinking. Based on literature synthesis and field measurements, we first describe cattle production systems and surface water redistribution in the Dry Chaco rangelands of South America, and then develop a conceptual framework to synthesize the ecohydrological impacts of livestock production on these ecosystems. Critical to this framework is the pioshere-a degraded overgrazed and overtrampled area where vegetation has difficulties growing, usually close to the water points. The Dry Chaco rangelands have three key distinctive characteristics associated with the flat sedimentary environment lacking fresh groundwater and the very extensive ranching conditions: (1) cattle drinking water is provided by artificial impoundments filled by runoff, (2) heavy trampling around the impoundment and its adjacent areas generates a piosphere that favors runoff toward the impoundment, and (3) the impoundment, piosphere, and extensive forage areas are hydrologically connected with a network of cattle trails. We propose an ecohydrological framework where cattle transit and trampling alter the natural water circulation of these ecosystems, affecting small fractions of the landscape through increased runoff (compaction in piosphere and trails), surface connectivity (convergence of trails to piosphere to impoundment), and ponding (compaction of the impoundment floor) that operate together making water harvesting and storage possible. These effects have likely generated a positive water feedback on the expansion of livestock in the region with a relatively low impact on forage production. We highlight the role of livestock transit as a geomorphological agent capable of reshaping the hydrology of flat sedimentary rangelands in ways that can be managed positively for sustainable ranching systems. We suggest that the Dry Chaco offers an alternative paradigm for rangelands in which cattle trampling may contribute to sustainable seminatural production systems with implications for other dry and flat rangelands of the world.


Assuntos
Ecossistema , Gado , Animais , Bovinos , Água , Hidrologia , América do Sul
2.
PLoS One ; 11(12): e0168168, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28005955

RESUMO

The dry subtropics are subject to a rapid expansion of crops and pastures over vast areas of natural woodlands and savannas. In this paper, we explored the effect of this transformation on vegetation productivity (magnitude, and seasonal and long-term variability) along aridity gradients which span from semiarid to subhumid conditions, considering exclusively those areas with summer rains (>66%). Vegetation productivity was characterized with the proxy metric "Enhanced Vegetation Index" (EVI) (2000 to 2012 period), on 6186 natural and cultivated sampling points on five continents, and combined with a global climatology database by means of additive models for quantile regressions. Globally and regionally, cultivation amplified the seasonal and inter-annual variability of EVI without affecting its magnitude. Natural and cultivated systems maintained a similar and continuous increase of EVI with increasing water availability, yet achieved through contrasting ways. In natural systems, the productivity peak and the growing season length displayed concurrent steady increases with water availability, while in cultivated systems the productivity peak increased from semiarid to dry-subhumid conditions, and stabilized thereafter giving place to an increase in the growing season length towards wetter conditions. Our results help to understand and predict the ecological impacts of deforestation on vegetation productivity, a key ecosystem process linked to a broad range of services.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Clima Tropical , Água/metabolismo , Mudança Climática , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...