Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1077350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37009487

RESUMO

The potential of mesenchymal stem cells (MSCs) for tissue repair and regeneration has garnered great attention. While MSCs are likely to interact with microbes at sites of tissue damage and inflammation, like in the gastrointestinal system, the consequences of pathogenic association on MSC activities have yet to be elucidated. This study investigated the effects of pathogenic interaction on MSC trilineage differentiation paths and mechanisms using model intracellular pathogen Salmonella enterica ssp enterica serotype Typhimurium. The examination of key markers of differentiation, apoptosis, and immunomodulation demonstrated that Salmonella altered osteogenic and chondrogenic differentiation pathways in human and goat adipose-derived MSCs. Anti-apoptotic and pro-proliferative responses were also significantly upregulated (p < 0.05) in MSCs during Salmonella challenge. These results together indicate that Salmonella, and potentially other pathogenic bacteria, can induce pathways that influence both apoptotic response and functional differentiation trajectories in MSCs, highlighting that microbes have a potentially significant role as influencers of MSC physiology and immune activity.

2.
Sci Rep ; 12(1): 7627, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538091

RESUMO

A long intergenic non-coding RNA (lincRNA#1) is overexpressed in the horn bud region of polled (hornless) bovine fetuses, suggesting a potential role in horn bud suppression. Genome editing was used to test whether the absence of this sequence was associated with the horned phenotype. Two gRNAs with high mutation efficiencies targeting the 5' and the 3' regions flanking the lincRNA#1 sequence were co-injected with Cas9 as ribonucleoprotein complexes into bovine zygotes (n = 121) 6 h post insemination. Of the resulting blastocysts (n = 31), 84% had the expected 3.7 kb deletion; of these embryos with the 3.7 kb deletions, 88% were biallelic knockouts. Thirty-nine presumptive edited 7-day blastocysts were transferred to 13 synchronized recipient cows resulting in ten pregnancies, five with embryos heterozygous for the dominant PC POLLED allele at the POLLED locus, and five with the recessive pp genotype. Eight (80%) of the resulting fetuses were biallelic lincRNA#1 knockouts, with the remaining two being mosaic. RT-qPCR analysis was used to confirm the absence of lincRNA#1 expression in knockout fetuses. Phenotypic and histological analysis of the genotypically (PCp) POLLED, lincRNA#1 knockout fetuses revealed similar morphology to non-edited, control polled fetuses, indicating the absence of lincRNA#1 alone does not result in a horned phenotype.


Assuntos
Cornos , RNA Longo não Codificante , Alelos , Animais , Bovinos , Feminino , Heterozigoto , Fenótipo , Gravidez , RNA Longo não Codificante/genética
3.
Transl Anim Sci ; 6(1): txac012, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35356233

RESUMO

Mesenchymal stem cells (MSCs) have great value as therapeutic tools in a wide array of applications in regenerative medicine. The wide repertoire of cell functions regarding tissue regeneration, immunomodulation, and antimicrobial activity makes MSC-based therapy a strong candidate for treatment options in a variety of clinical conditions and should be studied to expand the current breadth of knowledge surrounding their physiological properties and therapeutic benefits. Livestock models are an appropriate resource for testing the efficacy of MSC therapies for their use in biomedical research and can be used to improve both human health and animal agriculture. Agricultural animal models such as pigs, cattle, sheep, and goats have grown in popularity for in vivo research relative to small animal models due to their overlapping similarities in structure and function that more closely mimic the human body. Cutaneous wound healing, bone regeneration, osteoarthritis, ischemic reperfusion injury, and mastitis recovery represent a few examples of the types of disease states that may be investigated in livestock using MSC-based therapy. Although the cost of agricultural animals is greater than small animal models, the information gained using livestock as a model holds great value for human applications, and in some cases, outcompetes the weight of information gained from rodent models. With emerging fields such as exosome-based therapy, proper in vivo models will be needed for testing efficacy and translational practice, i.e., livestock models should be strongly considered as candidates. The potential for capitalizing on areas that have crossover benefits for both agricultural economic gain and improved health of the animals while minimizing the gap between translational research and clinical practice are what make livestock great choices for experimental MSC models.

4.
Sci Rep ; 12(1): 2067, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136148

RESUMO

Dehorning is a common practice in the dairy industry, but raises animal welfare concerns. A naturally occurring genetic mutation (PC allele) comprised of a 212 bp duplicated DNA sequence replacing a 10-bp sequence at the polled locus is associated with the hornless phenotype (polled) in cattle. To test the hypothesis that the 10 bp deletion alone is sufficient to result in polled, a CRISPR-Cas9 dual guide RNA approach was optimized to delete a 133 bp region including the 10 bp sequence. Timing of ribonucleoprotein complex injections at various hours post insemination (hpi) (6, 8, and 18 hpi) as well as in vitro transcribed (IVT) vs synthetic gRNAs were compared. Embryos injected 6 hpi had a significantly higher deletion rate (53%) compared to those injected 8 (12%) and 18 hpi (7%), and synthetic gRNAs had a significantly higher deletion rate (84%) compared to IVT gRNAs (53%). Embryo transfers were performed, and bovine fetuses were harvested between 3 and 5 months of gestation. All fetuses had mutations at the target site, with two of the seven having biallelic deletions, and yet they displayed horn bud development indicating that the 10 bp deletion alone is not sufficient to result in the polled phenotype.


Assuntos
Indústria de Laticínios/métodos , Feto/anatomia & histologia , Cornos/crescimento & desenvolvimento , Deleção de Sequência/genética , Animais , Sistemas CRISPR-Cas , Bovinos , Transferência Embrionária/métodos , Feto/embriologia , Genótipo , Fenótipo , RNA Guia de Cinetoplastídeos/genética
5.
Bull Math Biol ; 84(1): 12, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860286
6.
BMC Genomics ; 22(1): 118, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33581720

RESUMO

BACKGROUND: The homologous recombination (HR) pathway is largely inactive in early embryos prior to the first cell division, making it difficult to achieve targeted gene knock-ins. The homology-mediated end joining (HMEJ)-based strategy has been shown to increase knock-in efficiency relative to HR, non-homologous end joining (NHEJ), and microhomology-mediated end joining (MMEJ) strategies in non-dividing cells. RESULTS: By introducing gRNA/Cas9 ribonucleoprotein complex and a HMEJ-based donor template with 1 kb homology arms flanked by the H11 safe harbor locus gRNA target site, knock-in rates of 40% of a 5.1 kb bovine sex-determining region Y (SRY)-green fluorescent protein (GFP) template were achieved in Bos taurus zygotes. Embryos that developed to the blastocyst stage were screened for GFP, and nine were transferred to recipient cows resulting in a live phenotypically normal bull calf. Genomic analyses revealed no wildtype sequence at the H11 target site, but rather a 26 bp insertion allele, and a complex 38 kb knock-in allele with seven copies of the SRY-GFP template and a single copy of the donor plasmid backbone. An additional minor 18 kb allele was detected that looks to be a derivative of the 38 kb allele resulting from the deletion of an inverted repeat of four copies of the SRY-GFP template. CONCLUSION: The allelic heterogeneity in this biallelic knock-in calf appears to have resulted from a combination of homology directed repair, homology independent targeted insertion by blunt-end ligation, NHEJ, and rearrangement following editing of the gRNA target site in the donor template. This study illustrates the potential to produce targeted gene knock-in animals by direct cytoplasmic injection of bovine embryos with gRNA/Cas9, although further optimization is required to ensure a precise single-copy gene integration event.


Assuntos
Sistemas CRISPR-Cas , Zigoto , Animais , Bovinos/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Reparo do DNA por Junção de Extremidades , Feminino , Edição de Genes , Técnicas de Introdução de Genes , Masculino
7.
Sci Rep ; 10(1): 22309, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339870

RESUMO

The CRISPR/Cas9 genome editing tool has the potential to improve the livestock breeding industry by allowing for the introduction of desirable traits. Although an efficient and targeted tool, the CRISPR/Cas9 system can have some drawbacks, including off-target mutations and mosaicism, particularly when used in developing embryos. Here, we introduced genome editing reagents into single-cell bovine embryos to compare the effect of Cas9 mRNA and protein on the mutation efficiency, level of mosaicism, and evaluate potential off-target mutations utilizing next generation sequencing. We designed guide-RNAs targeting three loci (POLLED, H11, and ZFX) in the bovine genome and saw a significantly higher rate of mutation in embryos injected with Cas9 protein (84.2%) vs. Cas9 mRNA (68.5%). In addition, the level of mosaicism was higher in embryos injected with Cas9 mRNA (100%) compared to those injected with Cas9 protein (94.2%), with little to no unintended off-target mutations detected. This study demonstrated that the use of gRNA/Cas9 ribonucleoprotein complex resulted in a high editing efficiency at three different loci in bovine embryos and decreased levels of mosaicism relative to Cas9 mRNA. Additional optimization will be required to further reduce mosaicism to levels that make single-step embryo editing in cattle commercially feasible.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , Animais , Bovinos , Embrião de Mamíferos , Genoma/genética , Mosaicismo , Mutação/genética , Taxa de Mutação , RNA Mensageiro/genética
8.
Sci Rep ; 10(1): 16031, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994506

RESUMO

Introducing useful traits into livestock breeding programs through gene knock-ins has proven challenging. Typically, targeted insertions have been performed in cell lines, followed by somatic cell nuclear transfer cloning, which can be inefficient. An alternative is to introduce genome editing reagents and a homologous recombination (HR) donor template into embryos to trigger homology directed repair (HDR). However, the HR pathway is primarily restricted to actively dividing cells (S/G2-phase) and its efficiency for the introduction of large DNA sequences in zygotes is low. The homology-mediated end joining (HMEJ) approach has been shown to improve knock-in efficiency in non-dividing cells and to harness HDR after direct injection of embryos. The knock-in efficiency for a 1.8 kb gene was contrasted when combining microinjection of a gRNA/Cas9 ribonucleoprotein complex with a traditional HR donor template or an HMEJ template in bovine zygotes. The HMEJ template resulted in a significantly higher rate of gene knock-in as compared to the HR template (37.0% and 13.8%; P < 0.05). Additionally, more than a third of the knock-in embryos (36.9%) were non-mosaic. This approach will facilitate the one-step introduction of gene constructs at a specific location of the bovine genome and contribute to the next generation of elite cattle.


Assuntos
Edição de Genes/métodos , Técnicas de Introdução de Genes/métodos , Engenharia Genética/métodos , Animais , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Bovinos , Reparo do DNA por Junção de Extremidades/fisiologia , Reparo do DNA/genética , Genoma/genética , Recombinação Homóloga/genética , Microinjeções/métodos , RNA Guia de Cinetoplastídeos/genética , Reparo de DNA por Recombinação/genética , Zigoto/fisiologia
9.
NPJ Sci Food ; 3: 3, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31304275

RESUMO

Dietary DNA is generally regarded as safe to consume, and is a routine ingredient of food obtained from any living organism. Millions of naturally-occurring DNA variations are observed when comparing the genomic sequence of any two healthy individuals of a given species. Breeders routinely select desired traits resulting from this DNA variation to develop new cultivars and varieties of food plants and animals. Regulatory agencies do not evaluate these new varieties prior to commercial release. Gene editing tools now allow plant and animal breeders to precisely introduce useful genetic variation into agricultural breeding programs. The U.S. Department of Agriculture (USDA) announced that it has no plans to place additional regulations on gene-edited plants that could otherwise have been developed through traditional breeding prior to commercialization. However, the U.S. Food and Drug Administration (FDA) has proposed mandatory premarket new animal drug regulatory evaluation for all food animals whose genomes have been intentionally altered using modern molecular technologies including gene editing technologies. This runs counter to U.S. biotechnology policy that regulatory oversight should be triggered by unreasonable risk, and not by the fact that an organism has been modified by a particular process or technique. Breeder intention is not associated with product risk. Harmonizing the regulations associated with gene editing in food species is imperative to allow both plant and animal breeders access to gene editing tools to introduce useful sustainability traits like disease resistance, climate adaptability, and food quality attributes into U.S. agricultural breeding programs.

10.
Br J Nutr ; 120(10): 1131-1148, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30400999

RESUMO

Malnutrition remains a leading contributor to the morbidity and mortality of children under the age of 5 years and can weaken the immune system and increase the severity of concurrent infections. Livestock milk with the protective properties of human milk is a potential therapeutic to modulate intestinal microbiota and improve outcomes. The aim of this study was to develop an infection model of childhood malnutrition in the pig to investigate the clinical, intestinal and microbiota changes associated with malnutrition and enterotoxigenic Escherichia coli (ETEC) infection and to test the ability of goat milk and milk from genetically engineered goats expressing the antimicrobial human lysozyme (hLZ) milk to mitigate these effects. Pigs were weaned onto a protein-energy-restricted diet and after 3 weeks were supplemented daily with goat, hLZ or no milk for a further 2 weeks and then challenged with ETEC. The restricted diet enriched faecal microbiota in Proteobacteria as seen in stunted children. Before infection, hLZ milk supplementation improved barrier function and villous height to a greater extent than goat milk. Both goat and hLZ milk enriched for taxa (Ruminococcaceae) associated with weight gain. Post-ETEC infection, pigs supplemented with hLZ milk weighed more, had improved Z-scores, longer villi and showed more stable bacterial populations during ETEC challenge than both the goat and no milk groups. This model of childhood disease was developed to test the confounding effects of malnutrition and infection and demonstrated the potential use of hLZ goat milk to mitigate the impacts of malnutrition and infection.


Assuntos
Ração Animal , Infecções por Escherichia coli/terapia , Desnutrição/terapia , Leite/química , Muramidase/química , Animais , Animais Geneticamente Modificados , Peso Corporal , Dieta , Suplementos Nutricionais , Modelos Animais de Doenças , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli/microbiologia , Fezes , Feminino , Microbioma Gastrointestinal , Genótipo , Cabras , Enteropatias , Intestinos/microbiologia , Masculino , Tamanho do Órgão , Permeabilidade , Suínos , Desmame
11.
Cerebellum ; 17(3): 372-379, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29294214

RESUMO

Cerebellar abiotrophy (CA) is a neurodegenerative disorder affecting the cerebellum and occurs in multiple species. Although CA is well researched in humans and mice, domestic species such as the dog, cat, sheep, cow, and horse receive little recognition. This may be due to few studies addressing the mechanism of CA in these species. However, valuable information can still be extracted from these cases. A review of the clinicohistologic phenotype of CA in these species and determining the various etiologies of CA may aid in determining conserved and required pathways necessary for proper cerebellar development and function. This review outlines research approaches of studies of CA in domestic species, compared to the approaches used in mice, with the objective of comparing CA in domestic species while identifying areas for further research efforts.


Assuntos
Doenças Cerebelares/veterinária , Doenças Neurodegenerativas/veterinária , Animais , Animais Domésticos , Doenças Cerebelares/etiologia , Doenças Cerebelares/patologia , Doenças Cerebelares/fisiopatologia , Humanos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia
12.
Eur J Pharm Sci ; 112: 79-86, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29128404

RESUMO

Lysozyme is an important non-specific immune protein in human milk, modulating the immune response against bacterial infections. The aim of this study was to characterize the milk of a transgenic goat expressing a recombinant human lysozyme (rhLZ) in the milk, also testing the in vitro antibacterial activity of the rhLZ milk against pathogens of the gastrointestinal tract. Milk samples collected from Tg and non-transgenic goats (nTg) from the 3rd to the 11th week of lactation were submitted to physicochemical analyses, rhLZ semi-quantification, and to rhLZ antimicrobial activity against Micrococcus luteus, Shiguella sonnei and Enterococcus faecalis. Viability and cell migration were studied in ileum epithelial cells (IEC-18) in absence or presence of E. faecalis, Staphylococcus aureus, Escherichia coli (EPEC) and S. sonnei. The expression of ZO-1 and IL-6 genes was evaluated in IEC-18 to evaluate the effect of rhLZ milk on intestinal barrier function and intestinal inflammation. Physicochemical parameters between goat Tg and nTg milk were similar and within normal values for human consumption, with hLZ concentrations being similar between Tg (224µg/mL) and human (226µg/mL) milk. The Tg milk had bactericidal activity against M. luteus, no bactericidal effect on S. sonnei, and relative to discrete sensitivity against E. feacalis than controls. Better migrating parameters were observed in cells in culture with nTg and Tg than controls. In the presence of pathogens, the Tg milk promoted improved migrating parameters than controls, except for S. sonnei, with lower cell numbers in the presence of nTg samples and E. faecalis and S. sonnei. No differences in ZO-1 relative expression patterns were observed in cultured cells, with increased expression in IL-6 in cells exposed to nTg milk than controls, with the Tg group being similar to all groups. In conclusion, goat milk containing rhLZ demonstrated valid evidence for its potential use as a nutraceutical for improvement of health and nutrition quality in humans.


Assuntos
Antibacterianos , Fenômenos Fisiológicos Bacterianos , Trato Gastrointestinal/microbiologia , Cabras/genética , Leite , Muramidase/genética , Animais , Animais Geneticamente Modificados , Linhagem Celular , Suplementos Nutricionais , Trato Gastrointestinal/metabolismo , Humanos , Interleucina-6/genética , Muramidase/metabolismo , Ratos , Proteína da Zônula de Oclusão-1/genética
13.
J Nutr ; 147(11): 2050-2059, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28954839

RESUMO

Background: Diarrheal diseases in infancy and childhood are responsible for substantial morbidity and mortality in developing nations. Lysozyme, an antimicrobial component of human milk, is thought to play a role in establishing a healthy intestinal microbiota and immune system. Consumption of breast milk has been shown to prevent intestinal infections and is a recommended treatment for infants with diarrhea.Objective: This study aimed to examine the ability of lysozyme-rich goat milk to prevent intestinal infection.Methods: Six-week-old Hampshire-Yorkshire pigs were assigned to treatment groups balanced for weight, sex, and litter and were fed milk from nontransgenic control goats (GM group) or human lysozyme transgenic goats (hLZM group) for 2 wk before they were challenged with porcine-specific enterotoxigenic Escherichia coli (ETEC). Fecal consistency, complete blood counts, intestinal histology, and microbial populations were evaluated.Results: Pigs in the hLZM group had less severe diarrhea than did GM pigs at 24 and 48 h after ETEC infection (P = 0.01 and 0.05, respectively), indicating a less severe clinical disease state. Relative to baseline, postmilk hLZM pigs had 19.9% and 137% enrichment in fecal Bacteroidetes (P = 0.028) and Paraprevotellaceae (P = 0.003), respectively, and a 93.8% reduction in Enterobacteriaceae (P = 0.007), whereas GM pigs had a 60.9% decrease in Lactobacillales (P = 0.003) and an 83.3% enrichment in Burkholderiales (P = 0.010). After ETEC infection, hLZM pigs tended to have lower amounts (68.7% less) of fecal Enterobacteriaceae than did GM pigs (P = 0.058). There were 83.1% fewer bacteria translocated into the mesenteric lymph nodes of hLZM pigs than into those of GM pigs (P = 0.039), and hLZM pigs had 34% lower mucin 1 and 61% higher tumor necrosis factor-α expression in the ileum than did GM pigs (P = 0.046 and 0.034, respectively).Conclusion: Results of this study indicate that human lysozyme milk consumption before and during ETEC infection has a positive effect on clinical disease, intestinal mucosa, and gut microbiota in young pigs.


Assuntos
Infecções por Escherichia coli/veterinária , Enteropatias/veterinária , Leite/química , Muramidase/administração & dosagem , Doenças dos Suínos/dietoterapia , Ração Animal/análise , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Bacteroidetes , Dieta/veterinária , Modelos Animais de Doenças , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli/dietoterapia , Fezes/microbiologia , Microbioma Gastrointestinal , Cabras/genética , Enteropatias/dietoterapia , Intestinos/microbiologia , Muramidase/análise , Suínos , Doenças dos Suínos/microbiologia
15.
Transgenic Res ; 25(3): 321-7, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26820413

RESUMO

At the time of the first Transgenic Animal Research Conference, the lack of knowledge about promoter, enhancer and coding regions of genes of interest greatly hampered our efforts to create transgenes that would express appropriately in livestock. Additionally, we were limited to gene insertion by pronuclear microinjection. As predicted then, widespread genome sequencing efforts and technological advancements have profoundly altered what we can do. There have been many developments in technology to create transgenic animals since we first met at Granlibakken in 1997, including the advent of somatic cell nuclear transfer-based cloning and gene editing. We can now create new transgenes that will express when and where we want and can target precisely in the genome where we want to make a change or insert a transgene. With the large number of sequenced genomes, we have unprecedented access to sequence information including, control regions, coding regions, and known allelic variants. These technological developments have ushered in new and renewed enthusiasm for the production of transgenic animals among scientists and animal agriculturalists around the world, both for the production of more relevant biomedical research models as well as for agricultural applications. However, even though great advancements have been made in our ability to control gene expression and target genetic changes in our animals, there still are no genetically engineered animal products on the market for food. World-wide there has been a failure of the regulatory processes to effectively move forward. Estimates suggest the world will need to increase our current food production 70 % by 2050; that is we will have to produce the total amount of food each year that has been consumed by mankind over the past 500 years. The combination of transgenic animal technology and gene editing will become increasingly more important tools to help feed the world. However, to date the practical benefits of these technologies have not yet reached consumers in any country and in the absence of predictable, science-based regulatory programs it is unlikely that the benefits will be realized in the short to medium term.


Assuntos
Animais Geneticamente Modificados/genética , Clonagem de Organismos/tendências , Engenharia Genética/tendências , Gado/genética , Agricultura , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Genoma , Gado/crescimento & desenvolvimento , Técnicas de Transferência Nuclear/tendências
16.
Food Funct ; 7(2): 665-78, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26751615

RESUMO

Malnutrition remains a leading contributor to the morbidity and mortality of children under the age of five worldwide. However, the underlying mechanisms are not well understood necessitating an appropriate animal model to answer fundamental questions and conduct translational research into optimal interventions. One potential intervention is milk from livestock that more closely mimics human milk by increased levels of bioactive components that can promote a healthy intestinal epithelium. We tested the ability of cow milk and milk from transgenic cows expressing human lactoferrin at levels found in human milk (hLF milk) to mitigate the effects of malnutrition at the level of the intestine in a pig model of malnutrition. Weaned pigs (3 weeks old) were fed a protein and calorie restricted diet for five weeks, receiving cow, hLF or no milk supplementation daily from weeks 3-5. After three weeks, the restricted diet induced changes in growth, blood chemistry and intestinal structure including villous atrophy, increased ex vivo permeability and decreased expression of tight junction proteins. Addition of both cow and hLF milk to the diet increased growth rate and calcium and glucose levels while promoting growth of the intestinal epithelium. In the jejunum hLF milk restored intestinal morphology, reduced permeability and increased expression of anti-inflammatory IL-10. Overall, this pig model of malnutrition mimics salient aspects of the human condition and demonstrates that cow milk can stimulate the repair of damage to the intestinal epithelium caused by protein and calorie restriction with hLF milk improving this recovery to a greater extent.


Assuntos
Lactoferrina/metabolismo , Desnutrição/dietoterapia , Desnutrição/metabolismo , Leite/metabolismo , Animais , Bovinos , Modelos Animais de Doenças , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Lactoferrina/análise , Lactoferrina/genética , Masculino , Desnutrição/genética , Desnutrição/imunologia , Leite/química , Suínos
17.
Transgenic Res ; 24(4): 605-14, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26059245

RESUMO

Genetic engineering, which was first developed in the 1980s, allows for specific additions to animals' genomes that are not possible through conventional breeding. Using genetic engineering to improve agricultural animals was first suggested when the technology was in the early stages of development by Palmiter et al. (Nature 300:611-615, 1982). One of the first agricultural applications identified was generating transgenic dairy animals that could produce altered or novel proteins in their milk. Human milk contains high levels of antimicrobial proteins that are found in low concentrations in the milk of ruminants, including the antimicrobial proteins lactoferrin and lysozyme. Lactoferrin and lysozyme are both part of the innate immune system and are secreted in tears, mucus, and throughout the gastrointestinal (GI) tract. Due to their antimicrobial properties and abundance in human milk, multiple lines of transgenic dairy animals that produce either human lactoferrin or human lysozyme have been developed. The focus of this review is to catalogue the different lines of genetically engineered dairy animals that produce either recombinant lactoferrin or lysozyme that have been generated over the years as well as compare the wealth of research that has been done on the in vitro and in vivo effects of the milk they produce. While recent advances including the development of CRISPRs and TALENs have removed many of the technical barriers to predictable and efficient genetic engineering in agricultural species, there are still many political and regulatory hurdles before genetic engineering can be used in agriculture. It is important to consider the substantial amount of work that has been done thus far on well established lines of genetically engineered animals evaluating both the animals themselves and the products they yield to identify the most effective path forward for future research and acceptance of this technology.


Assuntos
Lactoferrina/metabolismo , Leite/metabolismo , Muramidase/metabolismo , Animais , Animais Geneticamente Modificados , Regulação da Expressão Gênica , Engenharia Genética , Humanos
18.
J Anim Sci Biotechnol ; 6(1): 1, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25838897

RESUMO

BACKGROUND: There is considerable interest in using goats as models for genetically engineering dairy animals and also for using stem cells as therapeutics for bone and cartilage repair. Mesenchymal stem cells (MSCs) have been isolated and characterized from various species, but are poorly characterized in goats. RESULTS: Goat MSCs isolated from bone marrow (BM-MSCs) and adipose tissue (ASCs) have the ability to undergo osteogenic, adipogenic and chondrogenic differentiation. Cytochemical staining and gene expression analysis show that ASCs have a greater capacity for adipogenic differentiation compared to BM-MSCs and fibroblasts. Different methods of inducing adipogenesis also affect the extent and profile of adipogenic differentiation in MSCs. Goat fibroblasts were not capable of osteogenesis, hence distinguishing them from the MSCs. Goat MSCs and fibroblasts express CD90, CD105, CD73 but not CD45, and exhibit cytoplasmic localization of OCT4 protein. Goat MSCs can be stably transfected by Nucleofection, but, as evidenced by colony-forming efficiency (CFE), yield significantly different levels of progenitor cells that are robust enough to proliferate into colonies of integrants following G418 selection. BM-MSCs expanded over increasing passages in vitro maintained karyotypic stability up to 20 passages in culture, exhibited an increase in adipogenic differentiation and CFE, but showed altered morphology and amenability to genetic modification by selection. CONCLUSIONS: Our findings provide characterization information on goat MSCs, and show that there can be significant differences between MSCs isolated from different tissues and from within the same tissue. Fibroblasts do not exhibit trilineage differentiation potential at the same capacity as MSCs, making it a more reliable method for distinguishing MSCs from fibroblasts, compared to cell surface marker expression.

19.
Annu Rev Anim Biosci ; 3: 559-75, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25387117

RESUMO

Recent advances in the production of genetically engineered (GE) livestock have resulted in a variety of new transgenic animals with desirable production and composition changes. GE animals have been generated to improve growth efficiency, food composition, and disease resistance in domesticated livestock species. GE animals are also used to produce pharmaceuticals and as medical models for human diseases. The potential use of these food animals for human consumption has prompted an intense debate about food safety and animal welfare concerns with the GE approach. Additionally, public perception and ethical concerns about their use have caused delays in establishing a clear and efficient regulatory approval process. Ethically, there are far-reaching implications of not using genetically engineered livestock, at a detriment to both producers and consumers, as use of this technology can improve both human and animal health and welfare.


Assuntos
Bem-Estar do Animal/ética , Animais Geneticamente Modificados , Modelos Animais de Doenças , Inocuidade dos Alimentos , Gado/genética , Animais , Temas Bioéticos , Alimentos Geneticamente Modificados
20.
J Anim Sci Biotechnol ; 5(1): 5, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24410946

RESUMO

BACKGROUND: Hematologic and biochemical reference intervals depend on many factors, including age. A review of the literature highlights the lack of reference intervals for 6-wk-old specific pathogen free (SPF) Hampshire-Yorkshire crossbred pigs. For translational research, 6-wk-old pigs represent an important animal model for both human juvenile colitis and diabetes mellitus type 2 given the similarities between the porcine and human gastrointestinal maturation process. The aim of this study was to determine reference intervals for hematological and biochemical parameters in healthy 6-wk-old crossbred pigs. Blood samples were collected from 66 clinically healthy Hampshire-Yorkshire pigs. The pigs were 6 wks old, represented both sexes, and were housed in a SPF facility. Automated hematological and biochemical analysis were performed using an ADVIA 120 Hematology System and a Cobas 6000 C501 Clinical Chemistry Analyzer. RESULTS: Reference intervals were calculated using both parametric and nonparametric methods. The mean, median, minimum, and maximum values were calculated. CONCLUSION: As pigs are used more frequently as medical models of human disease, having reference intervals for commonly measured hematological and biochemical parameters in 6-wk-old pigs will be useful. The reference intervals calculated in this study will aid in the diagnosis and monitoring of both naturally occurring and experimentally induced disease. In comparison to published reference intervals for older non SPF pigs, notable differences in leukocyte populations, and in levels of sodium, potassium, glucose, protein, and alkaline phosphatase were observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...