Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 100(6): e02691, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30989648

RESUMO

The size of the terrestrial carbon (C) sink is mediated by the availability of nutrients that limit plant growth. However, nutrient controls on primary productivity are poorly understood in the geographically extensive yet understudied tropical dry forest biome. To examine how nutrients influence above- and belowground biomass production in a secondary, seasonally dry tropical forest, we conducted a replicated, fully factorial nitrogen (N) and phosphorus (P) fertilization experiment at the stand scale in Guanacaste, Costa Rica. The production of leaves, wood, and fine roots was monitored through time; root colonization by mycorrhizal fungi and the abundance of N-fixing root nodules were also quantified. In this seasonal forest, interannual variation in rainfall had the largest influence on stand-level productivity, with lower biomass growth under drought. By contrast, aboveground productivity was generally not increased by nutrient addition, although fertilization enhanced growth of individual tree stems in a wet year. However, root growth increased markedly and consistently under P addition, significantly altering patterns of stand-level biomass allocation to above- vs. belowground compartments. Although nutrients did not stimulate total biomass production at the community scale, N-fixing legumes exhibited a twofold increase in woody growth in response to added P, accompanied by a dramatic increase in the abundance of root nodules. These data suggest that the relationship between nutrient availability and primary production in tropical dry forest is contingent on both water availability and plant functional diversity.


Assuntos
Florestas , Clima Tropical , Biomassa , Costa Rica , Nitrogênio , Nutrientes , Fósforo , Folhas de Planta , Raízes de Plantas , Solo , Árvores
2.
Am J Bot ; 104(12): 1790-1801, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29196341

RESUMO

PREMISE OF THE STUDY: Tropical Montane Cloud Forests (TMCFs) are important ecosystems to study and preserve because of their high biodiversity and critical roles in local and regional ecosystem processes. TMCFs may be particularly affected by changes in climate because of the narrow bands of microclimate they occupy and the vulnerability of TMCF species to projected increases in cloud base heights and drought. A comprehensive understanding of the structure and function of TMCFs is lacking and difficult to attain because of variation in topography within and across TMCF sites. This causes large differences in microclimate and forest structure at both large and small scales. METHODS: In this study, we estimated the abundance of the entire epiphyte community in the canopy (bryophytes, herbaceous vascular plants, woody epiphytes, and canopy dead organic matter) in six sites. In each of the sites we installed a complete canopy weather station to link epiphyte abundance to a number of microclimatic parameters. KEY RESULTS: We found significant differences in epiphyte abundance across the sites; epiphyte abundance increased with elevation and leaf wetness, but decreased as vapor pressure deficit (VPD) increased. Epiphyte abundance had the strongest relationship with VPD; there were differences in VPD that could not be explained by elevation alone. CONCLUSIONS: By measuring this proxy of canopy VPD, TMCF researchers will better understand differences in microclimate and plant community composition across TMCF sites. Incorporating such information in comparative studies will allow for more meaningful comparisons across TMCFs and will further conservation and management efforts in this ecosystem.


Assuntos
Altitude , Florestas , Plantas/classificação , Clima Tropical , Pressão de Vapor , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...