Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Clin Nutr ; 115(6): 1577-1588, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35134818

RESUMO

BACKGROUND: Plasma phospholipid pentadecanoic acid (C15:0), heptadecanoic acid (C17:0), and trans-palmitoleic acid (trans-C16:1n-7) are correlates of dairy fat intake. However, their relative concentrations may be influenced by other endogenous factors, such as liver fat content, and their validity as biomarkers of dairy fat intake has yet to be established. OBJECTIVES: We investigated whether liver fat content modifies relations between concentrations of C15:0, C17:0, and trans-C16:1n-7 (alone and in combination with iso-C17:0) and known dairy fat intake in the context of a randomized controlled intervention study. We further examined the proportion of dairy fat intake explained by these fatty acids on their own and when considering liver fat content. METHODS: We used data from a 12-wk intervention trial in which participants (n = 62) consumed diets limited in dairy (0.3 g/d of dairy fat), rich in low-fat dairy (8.7 g/d of dairy fat), or rich in full-fat dairy (28.5 g/d of dairy fat). We used linear regression models to examine relations between relative fatty acid concentrations and grams per day of dairy fat intake, liver fat percentage, and their interaction. RESULTS: Only trans-C16:1n-7 in isolation (ß: 0.0004 ± 0.0002, P = 0.03) and combined with iso-C17:0 (ß: 0.002 ± 0.0005, P < 0.0001) were consistently positively associated with dairy fat intake regardless of liver fat content. Trans-C16:1n-7 combined with iso-C17:0 also explained the greatest proportion of variation (35.4%) in dairy fat intake. C15:0 and C17:0 were not associated with dairy fat intake after adjusting for liver fat and were predicted to be higher in relation to increased dairy fat intake only among individuals with elevated liver fat. CONCLUSIONS: The potential for liver fat to affect relative plasma phospholipid concentrations of C15:0 and C17:0 raises questions about their validity as biomarkers of dairy fat intake. Of the fatty acid measures tested, trans-C16:1n-7 combined with iso-C17:0, especially with adjustment of liver fat, age, and sex, may provide the most robust estimate of dairy fat consumption.


Assuntos
Gorduras na Dieta , Fosfolipídeos , Biomarcadores , Laticínios , Dieta com Restrição de Gorduras , Ácidos Graxos , Humanos
2.
Am J Clin Nutr ; 114(3): 882-892, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34258627

RESUMO

BACKGROUND: Dietary guidelines traditionally recommend low-fat dairy because dairy's high saturated fat content is thought to promote cardiovascular disease (CVD). However, emerging evidence indicates that dairy fat may not negatively impact CVD risk factors when consumed in foods with a complex matrix. OBJECTIVE: The aim was to compare the effects of diets limited in dairy or rich in either low-fat or full-fat dairy on CVD risk factors. METHODS: In this randomized controlled trial, 72 participants with metabolic syndrome completed a 4-wk run-in period, limiting their dairy intake to ≤3 servings/wk of nonfat milk. Participants were then randomly assigned to 1 of 3 diets, either continuing the limited-dairy diet or switching to a diet containing 3.3 servings/d of either low-fat or full-fat milk, yogurt, and cheese for 12 wk. Exploratory outcome measures included changes in the fasting lipid profile and blood pressure. RESULTS: In the per-protocol analysis (n = 66), there was no intervention effect on fasting serum total, LDL, and HDL cholesterol; triglycerides; free fatty acids; or cholesterol content in 38 isolated plasma lipoprotein fractions (P > 0.1 for all variables in repeated-measures ANOVA). There was also no intervention effect on diastolic blood pressure, but a significant intervention effect for systolic blood pressure (P = 0.048), with a trend for a decrease in the low-fat dairy diet (-1.6 ± 8.6 mm Hg) compared with the limited-dairy diet (+2.5 ± 8.2 mm Hg) in post hoc testing. Intent-to-treat results were consistent for all endpoints, with the exception that systolic blood pressure became nonsignificant (P = 0.08). CONCLUSIONS: In men and women with metabolic syndrome, a diet rich in full-fat dairy had no effects on fasting lipid profile or blood pressure compared with diets limited in dairy or rich in low-fat dairy. Therefore, dairy fat, when consumed as part of complex whole foods, does not adversely impact these classic CVD risk factors. This trial was registered at clinicaltrials.gov as NCT02663544.


Assuntos
Laticínios/análise , Gorduras na Dieta/administração & dosagem , Lipídeos/sangue , Adiposidade/efeitos dos fármacos , Adulto , Idoso , Pressão Sanguínea , Doenças Cardiovasculares , Laticínios/efeitos adversos , Gorduras na Dieta/efeitos adversos , Comportamento Alimentar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
3.
Am J Clin Nutr ; 113(3): 534-547, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33184632

RESUMO

BACKGROUND: Dairy foods, particularly yogurt, and plasma biomarkers of dairy fat intake are consistently inversely associated with incident type 2 diabetes. Yet, few trials assessing the impact of dairy on glucose homeostasis include fermented or full-fat dairy foods. OBJECTIVES: We aimed to compare the effects of diets rich in low-fat or full-fat milk, yogurt, and cheese on glucose tolerance and its determinants, with those of a limited dairy diet. METHODS: In this parallel-design randomized controlled trial, 72 participants with metabolic syndrome completed a 4-wk wash-in period, limiting dairy intake to ≤3 servings/wk of nonfat milk. Participants were then randomly assigned to either continue the limited dairy diet, or switch to a diet containing 3.3 servings/d of either low-fat or full-fat dairy for 12 wk. Outcome measures included glucose tolerance (area under the curve glucose during an oral-glucose-tolerance test), insulin sensitivity, pancreatic ß-cell function, systemic inflammation, liver-fat content, and body weight and composition. RESULTS: In the per-protocol analysis (n = 67), we observed no intervention effect on glucose tolerance (P = 0.340). Both the low-fat and full-fat dairy diets decreased the Matsuda insulin sensitivity index (ISI) (means ± SDs -0.47 ± 1.07 and -0.25 ± 0.91, respectively) and as compared with the limited dairy group (0.00 ± 0.92) (P = 0.012 overall). Body weight also changed differentially (P = 0.006 overall), increasing on full-fat dairy (+1.0 kg; -0.2, 1.8 kg) compared with the limited dairy diet (-0.4 kg; -2.5, 0.7 kg), whereas the low-fat dairy diet (+0.3 kg; -1.1, 1.9 kg) was not significantly different from the other interventions. Intervention effects on the Matsuda ISI remained after adjusting for changes in adiposity. No intervention effects were detected for liver fat content or systemic inflammation. Findings in intent-to-treat analyses (n = 72) were consistent. CONCLUSIONS: Contrary to our hypothesis, neither dairy diet improved glucose tolerance in individuals with metabolic syndrome. Both dairy diets decreased insulin sensitivity through mechanisms largely unrelated to changes in key determinants of insulin sensitivity.This trial was registered at clinicaltrials.gov as NCT02663544.


Assuntos
Laticínios , Gorduras na Dieta/administração & dosagem , Intolerância à Glucose , Leite/química , Idoso , Animais , Composição Corporal , Peso Corporal , Gorduras na Dieta/análise , Ingestão de Energia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...