Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(5): 9098-9111, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36860009

RESUMO

Laser ultrasonics is a remote nondestructive evaluation technique suitable for real-time monitoring of fabrication processes in semiconductor metrology, advanced manufacturing, and other applications where non-contact, high fidelity measurements are required. Here we investigate laser ultrasonic data processing approaches to reconstruct images of subsurface side drilled holes in aluminum alloy specimens. We demonstrate through simulation that the model-based linear sampling method (LSM) can perform accurate shape reconstruction of single and multiple holes and produce images with well-defined boundaries. We experimentally confirm that LSM produces images that represent the internal geometric features of an object, some of which may be missed by conventional imaging.

2.
Langmuir ; 39(1): 168-176, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36524827

RESUMO

Vaporizable endoskeletal droplets are solid hydrocarbons in liquid fluorocarbon droplets in which melting of the hydrocarbon phase leads to the vaporization of the fluorocarbon phase. In prior work, vaporization of the endoskeletal droplets was achieved thermally by heating the surrounding aqueous medium. In this work, we introduce a near-infrared (NIR) optically absorbing naphthalocyanine dye (zinc 2,11,20,29-tetra-tert-butyl-2,3-naphthalocynanine) into the solid hydrocarbon (eicosane, n-C20H42) core of liquid fluorocarbon (C5F12) drops suspended in an aqueous medium. Droplets with a uniform diameter of 11.7 ± 0.7 µm were formed using a flow-focusing microfluidic device. The solid hydrocarbon formed a crumpled spherical structure within the liquid fluorocarbon droplet. The photoactivation behavior of these dye-containing endoskeletal droplets was investigated using NIR laser irradiation. When exposed to a pulsed laser of 720 nm wavelength, the dye-containing droplets vaporized at an average laser fluence of 65 mJ/cm2, whereas blank droplets without the dye did not vaporize at any fluence up to 100 mJ/cm2. Furthermore, dye-loaded droplets with a smaller, polydisperse size distribution were prepared using a simple shaking method and studied in a flow phantom for their photoacoustic signal and ultrasound contrast imaging. These results demonstrate that dye-containing endoskeletal droplets can be made to vaporize by externally applied optical energy. Such droplets may be useful for a variety of photoacoustic applications for sensing, imaging, and therapy.


Assuntos
Fluorocarbonos , Compostos Orgânicos , Volatilização , Ultrassonografia , Fluorocarbonos/química
3.
Sci Rep ; 12(1): 9865, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701652

RESUMO

Intra- and inter-layer integrity of components fabricated with advanced manufacturing techniques, such as laser powder bed fusion, is dependent upon rapid heating, melting, and solidification processes. There is a need for new techniques to provide in situ feedback of these processes. Here a laser-based ultrasonic technique to probe thermal effects induced by a high-power continuous wave laser in titanium samples is described. Numerical simulations were performed to show that, for a spatially uniform heating beam, laser-induced surface acoustic waves are strongly influenced by surface heating conditions, are dispersive in the case of rapid heating, and that an abrupt velocity reduction happens upon the onset of surface melting. Furthermore, laser-based ultrasound experimental results which monitor the transient change of surface wave travel time associated with high power laser surface heating are provided. A pulsed laser is used to generate high frequency surface acoustic waves that propagate through the laser-heated region and are detected using a photorefractive crystal-based interferometer. Qualitative agreement is observed between theory and experiment with both showing a rapid reduction in the surface wave velocity at the onset of illumination and further decrease in surface wave velocity associated with melting. It is demonstrated that changes in the surface wave velocity can be used to track local heating and detect the onset of surface melting in real time.

4.
JASA Express Lett ; 2(1): 012001, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35005712

RESUMO

A photoacoustic contrast mechanism is presented based on the photoacoustic fluctuations induced by microbubbles flowing inside a micro-vessel filled with a continuous absorber. It is demonstrated that the standard deviation of a homogeneous absorber mixed with microbubbles increases non-linearly as the microbubble concentration and microbubble size is increased. This effect is then utilized to perform photoacoustic fluctuation imaging with increased visibility and contrast of a blood flow phantom.

5.
Langmuir ; 37(7): 2386-2396, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33566623

RESUMO

Nanodrops comprising a perfluorocarbon liquid core can be acoustically vaporized into echogenic microbubbles for ultrasound imaging. Packaging the microbubble in its condensed liquid state provides some advantages, including in situ activation of the acoustic signal, longer circulation persistence, and the advent of expanded diagnostic and therapeutic applications in pathologies which exhibit compromised vasculature. One obstacle to clinical translation is the inability of the limited surfactant present on the nanodrop to encapsulate the greatly expanded microbubble interface, resulting in ephemeral microbubbles with limited utility. In this study, we examine a biomimetic approach to stabilize an expanding gas surface by employing the lung surfactant replacement, beractant. Lung surfactant contains a suite of lipids and proteins that provide efficient shuttling of material from bilayer folds to the monolayer surface. We hypothesized that beractant would improve stability of acoustically vaporized microbubbles. To test this hypothesis, we characterized beractant surface dilation mechanics and revealed a novel biophysical phenomenon of rapid interfacial melting, spreading, and resolidification. We then harnessed this unique functionality to increase the stability and echogenicity of microbubbles produced after acoustic droplet vaporization for in vivo ultrasound imaging. Such biomimetic lung surfactant-stabilized nanodrops may be useful for applications in ultrasound imaging and therapy.


Assuntos
Biomimética , Meios de Contraste , Pulmão , Microbolhas , Tensoativos , Ultrassonografia
6.
Artigo em Inglês | MEDLINE | ID: mdl-33460371

RESUMO

The utility of ultrasound imaging and therapy with microbubbles may be greatly enhanced by determining their impulse-response dynamics as a function of size and composition. Prior methods for microbubble characterization utilizing high-speed cameras, acoustic transducers and laser-based techniques typically scan a limited frequency range. Here, we report on the use of a novel photoacoustic technique to measure the impulse response of single microbubbles. Individual microbubbles are driven with a broadband photoacoustic wave generated by a nanosecond-pulse laser illuminating an optical absorber. The resulting microbubble oscillations were detected by following transmission of a second laser as it passes twice through the microbubble. The system could even resolve oscillations resulting from a single-shot. As a proof-of-concept study, the size-dependent, linear impulse response of lipid-coated microbubbles was characterized using this technique. This unique method of microbubble characterization with exceptional spatiotemporal resolution opens new avenues for capturing and analyzing microbubble system dynamics.


Assuntos
Meios de Contraste , Microbolhas , Acústica , Lipídeos , Ultrassonografia
7.
ACS Appl Nano Mater ; 4(11): 12073-12082, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38031593

RESUMO

In this work, we report that gold nanorods coated with hydrophobically-modified mesoporous silica shells not only enhance photoacoustic (PA) signal over unmodified mesoporous silica coated gold nanorods, but that the relationship between PA amplitude and input laser fluence is strongly nonlinear. Mesoporous silica shells of ~14 nm thickness and with ~3 nm pores were grown on gold nanorods showing near infrared absorption. The silica was rendered hydrophobic with addition of dodecyltrichlorosilane, then re-suspended in aqueous media with a lipid monolayer. Analysis of the PA signal revealed not only an enhancement of PA signal compared to mesoporous silica coated gold nanorods at lower laser fluences, but also a nonlinear relationship between PA signal and laser fluence. We attribute each effect to the entrapment of solvent vapor in the mesopores: the vapor has both a larger expansion coefficient and thermal resistance than silica that enhances conversion to acoustic energy, and the hydrophobic porous surface is able to promote phase transition at the surface, leading to a nonlinear PA response even at fluences as low as 5 mJ cm-2. At 21 mJ cm-2, the highest laser fluence tested, the PA enhancement was >12-fold over mesoporous silica coated gold nanorods.

8.
J Acoust Soc Am ; 147(5): 3236, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32486824

RESUMO

Microbubble translations driven by ultrasound-induced radiation forces can be beneficial for applications in ultrasound molecular imaging and drug delivery. Here, the effect of size range in microbubble populations on their translations is investigated experimentally and theoretically. The displacements within five distinct size-isolated microbubble populations are driven by a standard ultrasound-imaging probe at frequencies ranging from 3 to 7 MHz, and measured using the multi-gate spectral Doppler approach. Peak microbubble displacements, reaching up to 10 µm per pulse, are found to describe transient phenomena from the resonant proportion of each bubble population. The overall trend of the statistical behavior of the bubble displacements, quantified by the total number of identified displacements, reveals significant differences between the bubble populations as a function of the transmission frequency. A good agreement is found between the experiments and theory that includes a model parameter fit, which is further supported by separate measurements of individual microbubbles to characterize the viscoelasticity of their stabilizing lipid shell. These findings may help to tune the microbubble size distribution and ultrasound transmission parameters to optimize the radiation-force translations. They also demonstrate a simple technique to characterize the microbubble shell viscosity, the fitted model parameter, from freely floating microbubble populations using a standard ultrasound-imaging probe.


Assuntos
Meios de Contraste , Microbolhas , Ondas Ultrassônicas , Ultrassonografia , Viscosidade
9.
Appl Phys Lett ; 116(12): 123703, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32231399

RESUMO

The interaction between an acoustically driven microbubble and a surface is of interest for a variety of applications, such as ultrasound imaging and therapy. Prior investigations have mainly focused on acoustic effects of a rigid boundary, where it was generally observed that the wall increases inertia and reduces the microbubble resonance frequency. Here we investigate the response of a lipid-coated microbubble adherent to a rigid wall. Firm adhesion between the microbubble and a glass surface was achieved through either specific (biotin/avidin) or nonspecific (lipid/glass) interactions. Total internal reflection fluorescence microscopy was used to verify conditions leading to either adhesion or non-adhesion of the bubble to a glass or rigid polymer surface. Individual microbubbles were driven acoustically to sub-nanometer-scale radial oscillations using a photoacoustic technique. Remarkably, adherent microbubbles were shown to have a higher resonance frequency than non-adherent microbubbles resting against the wall. Analysis of the resonance curves indicates that adhesion stiffens the bubble by an apparent increase in the shell elasticity term and decrease in the shell viscosity. Based on these results, we conclude that surface adhesion is dominant over acoustic effects for low-amplitude microbubble oscillations.

10.
Opt Express ; 28(7): 9823-9832, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225582

RESUMO

Focusing light through turbid media using wavefront shaping generally requires a noninvasive guide star to provide feedback on the focusing process. Here we report a photoacoustic guide star mechanism suitable for wavefront shaping through a scattering wall that is based on the fluctuations in the photoacoustic signals generated in a micro-vessel filled with flowing absorbers. The standard deviation of photoacoustic signals generated from random distributions of particles is dependent on the illumination volume and increases nonlinearly as the illumination volume is decreased. We harness this effect to guide wavefront shaping using the standard deviation of the photoacoustic response as the feedback signal. We further demonstrate sub-acoustic resolution optical focusing through a diffuser with a genetic algorithm optimization routine.

11.
Sci Rep ; 9(1): 15216, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645576

RESUMO

Lamb waves exhibit conical dispersion at zero wave number when an accidental degeneracy occurs between thickness mode longitudinal and shear resonances of the same symmetry. Here we investigate the propagation of Lamb waves generated at the conical point frequency and the interaction of these waves with defects and interfaces. The group velocity and mode shapes of Lamb waves at the conical point are found, and it is shown that as the wavenumber gets close to zero, considerable group velocity is seen only for material properties supporting a degeneracy or near-degeneracy. The unusual wave propagation and mode conversion of Lamb waves generated at the conical point are elucidated through numerical simulations. Experimental measurements of near conical point Lamb wave interaction with holes in a plate demonstrate that these waves flow around defects while maintaining a constant phase of oscillation across that plate surface.

12.
Appl Phys Lett ; 112(11): 111905, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29576628

RESUMO

Phospholipid-coated microbubbles are being developed for several biomedical applications, but little is known about the effect of temperature on the viscoelastic properties of the shell. Here, we report on the use of a photoacoustic technique to study the shell properties of individual microbubbles as a function of temperature. The microbubbles were driven into small-amplitude oscillations by ultrasound waves generated from the absorption of an intensity-modulated infrared laser, and these oscillations were detected by forward-light scattering of a second blue laser. The drive laser modulation frequency was swept to determine the resonant response of 2-4 µm radius microbubbles. Lipid shell elasticity and viscosity were determined by modeling the microbubble response as a linear harmonic oscillator. The results from slow heating showed a linear decrease in elasticity and viscosity between 21 and 53 °C and a corresponding increase in the maximum oscillation amplitude. Rapid heating to 38 °C, on the other hand, showed a transient response in the viscoelastic properties, suggesting shell rupture and reformation during microbubble growth and subsequent dissolution. These effects are important for biomedical applications, which require warming of the microbubbles to body temperature.

13.
Langmuir ; 32(37): 9410-7, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27552442

RESUMO

Lipid monolayer rheology plays an important role in a variety of interfacial phenomena, the physics of biological membranes, and the dynamic response of acoustic bubbles and drops. We show here measurements of lipid monolayer elasticity and viscosity for very small strains at megahertz frequency. Individual plasmonic microbubbles of 2-6 µm radius were photothermally activated with a short laser pulse, and the subsequent nanometer-scale radial oscillations during ring-down were monitored by optical scatter. This method provided average dynamic response measurements of single microbubbles. Each microbubble was modeled as an underdamped linear oscillator to determine the damping ratio and eigenfrequency, and thus the lipid monolayer viscosity and elasticity. Our nonisothermal measurement technique revealed viscoelastic trends for different lipid shell compositions. We observed a significant increase in surface elasticity with the lipid acyl chain length for 16 to 20 carbons, and this effect was explained by an intermolecular forces model that accounts for the lipid composition, packing, and hydration. The surface viscosity was found to be equivalent for these lipid shells. We also observed an anomalous decrease in elasticity and an increase in viscosity when increasing the acyl chain length from 20 to 22 carbons. These results illustrate the use of a novel nondestructive optical technique to investigate lipid monolayer rheology in new regimes of frequency and strain, possibly elucidating the phase behavior, as well as how the dynamic response of a microbubble can be tuned by the lipid intermolecular forces.


Assuntos
Elasticidade , Lipídeos/química , Microbolhas , Viscosidade
14.
Ultrasonics ; 65: 1-4, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26527393

RESUMO

In the presented work, the characterization of plates using zero group velocity Lamb modes is discussed. First, analytical expressions are shown for the determination of the k-ω location of the zero group velocity Lamb modes as a function of the Poisson's ratio. The analytical expressions are solved numerically and an inverse problem is formulated to determine the unknown wave velocities in plates of known thickness. The analysis is applied to determine the elastic properties of tungsten and aluminum plates based on the experimentally measured frequency spectra.

16.
Nat Commun ; 6: 7902, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26249833

RESUMO

The use of wavefront shaping to compensate for scattering has brought a renewed interest as a potential solution to imaging through scattering walls. A key to the practicality of any imaging through scattering technique is the capability to focus light without direct access behind the scattering wall. Here we address this problem using photoacoustic feedback for wavefront optimization. By combining the spatially non-uniform sensitivity of the ultrasound transducer to the generated photoacoustic waves with an evolutionary competition among optical modes, the speckle field develops a single, high intensity focus significantly smaller than the acoustic focus used for feedback. Notably, this method is not limited by the size of the absorber to form a sub-acoustic optical focus. We demonstrate imaging behind a scattering medium using two different imaging modalities with up to ten times improvement in signal-to-noise ratio and five to six times sub-acoustic resolution.

17.
J Acoust Soc Am ; 138(1): 242-50, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233023

RESUMO

The excitability of zero group velocity (ZGV) Lamb waves using a pulsed laser source is investigated experimentally and through numerical simulation. Experimentally, a laser based ultrasonic technique is used to find the optical spot size on the sample surface that allows an optimal coupling of the optical energy into the ZGV mode. Numerical simulations, using the time domain finite differences technique, are carried out to model the thermoelastic generation process by laser irradiation and the propagation of the generated acoustic waves. The experimental results are in good agreement with the numerical predictions. The experimentally and numerically obtained responses of the plate are investigated by a short-time Fourier transform. The responses show that the source diameter does not affect the fundamental behavior of the temporal decay of the ZGV mode.

18.
Sci Rep ; 5: 11112, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26053960

RESUMO

Elastic waves are guided along finite structures such as cylinders, plates, or rods through reflection, refraction, and mode conversion at the interfaces. Such wave propagation is ubiquitous in the world around us, and studies of elastic waveguides first emerged in the later part of the 19(th) century. Early work on elastic waveguides revealed the presence of backward propagating waves, in which the phase velocity and group velocity are anti-parallel. While backward wave propagation exists naturally in very simple finite elastic media, there has been remarkably little attention paid to this phenomenon. Here we report the development of a tunable acoustic lens in an isotropic elastic plate showing negative refraction over a finite acoustic frequency bandwidth. As compared to engineered acoustic materials such as phononic crystals and metamaterials, the design of the acoustic lens is very simple, with negative refraction obtained through thickness changes rather than internal periodicity or sub-wavelength resonant structures. A new class of acoustic devices, including resonators, filters, lenses, and cloaks, may be possible through topography optimization of elastic waveguide structures to exploit the unique properties of backward waves.

19.
Opt Lett ; 39(13): 3732-5, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24978723

RESUMO

We report on the optical excitation and detection of resonant microbubble oscillations. Optically absorbing nanoparticles were attached to the shell of a lipid-encapsulated microbubble, allowing for optical pulsing to photothermally drive the microbubble into resonance. A modified optical microscope was used to track the bubble wall radius as a function of time using light scattering. The microbubble response from a nanosecond laser pulse was measured, and the eigenfrequency and vibrational amplitude were determined and compared to theory. The ability to optically drive microbubble oscillations may have applications in basic studies of bubble dynamics and biomedical imaging and therapy.


Assuntos
Nanopartículas Metálicas , Microbolhas , Materiais Revestidos Biocompatíveis , Meios de Contraste , Ouro , Lasers , Nanopartículas Metálicas/ultraestrutura , Microscopia Acústica/instrumentação , Fenômenos Ópticos , Tamanho da Partícula , Técnicas Fotoacústicas/instrumentação
20.
Biomed Opt Express ; 5(12): 4417-27, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25574448

RESUMO

Liquid perfluorocarbon (PFC) droplets incorporating optical absorbers can be vaporized through photothermal heating using a pulsed laser source. Here, we report on the effect of droplet core material on the optical fluence required to produce droplet vaporization. We fabricate gold nanoparticle templated microbubbles filled with various PFC gases (C3F8, C4F10, and C5F12) and apply pressure to condense them into droplets. The core material is found to have a strong effect on the threshold optical fluence, with lower boiling point droplets allowing for vaporization at lower laser fluence. The impact of droplet size on vaporization threshold is discussed, as well as a proposed mechanism for the relatively broad distribution of vaporization thresholds observed within a droplet population with the same core material. We propose that the control of optical vaporization threshold enabled by engineering the droplet core may find application in contrast enhanced photoacoustic imaging and therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...