Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 175: 116730, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749175

RESUMO

Acute kidney injury (AKI) disrupts energy metabolism. Targeting metabolism through AMP-activated protein kinase (AMPK) may alleviate AKI. ATX-304, a pan-AMPK activator, was evaluated in C57Bl/6 mice and tubular epithelial cell (TEC) cultures. Mice received ATX-304 (1 mg/g) or control chow for 7 days before cisplatin-induced AKI (CI-AKI). Primary cultures of tubular epithelial cells (TECs) were pre-treated with ATX-304 (20 µM, 4 h) prior to exposure to cisplatin (20 µM, 23 h). ATX-304 increased acetyl-CoA carboxylase phosphorylation, indicating AMPK activation. It protected against CI-AKI measured by serum creatinine (control 0.05 + 0.03 mM vs ATX-304 0.02 + 0.01 mM, P = 0.03), western blot for neutrophil gelatinase-associated lipocalin (NGAL) (control 3.3 + 1.8-fold vs ATX-304 1.2 + 0.55-fold, P = 0.002), and histological injury (control 3.5 + 0.59 vs ATX-304 2.7 + 0.74, P = 0.03). In TECs, pre-treatment with ATX-304 protected against cisplatin-mediated injury, as measured by lactate dehydrogenase release, MTS cell viability, and cleaved caspase 3 expression. ATX-304 protection against cisplatin was lost in AMPK-null murine embryonic fibroblasts. Metabolomic analysis in TECs revealed that ATX-304 (20 µM, 4 h) altered 66/126 metabolites, including fatty acids, tricarboxylic acid cycle metabolites, and amino acids. Metabolic studies of live cells using the XFe96 Seahorse analyzer revealed that ATX-304 increased the basal TEC oxygen consumption rate by 38%, whereas maximal respiration was unchanged. Thus, ATX-304 protects against cisplatin-mediated kidney injury via AMPK-dependent metabolic reprogramming, revealing a promising therapeutic strategy for AKI.


Assuntos
Proteínas Quinases Ativadas por AMP , Injúria Renal Aguda , Cisplatino , Camundongos Endogâmicos C57BL , Animais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Masculino , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Cultivadas , Substâncias Protetoras/farmacologia , Fosforilação , Compostos de Bifenilo , Pironas , Tiofenos
2.
Cell Rep ; 41(12): 111862, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36543129

RESUMO

AMP-activated protein kinase (AMPK) is a master regulator of cellular energy homeostasis and a therapeutic target for metabolic diseases. Co/post-translational N-myristoylation of glycine-2 (Gly2) of the AMPK ß subunit has been suggested to regulate the distribution of the kinase between the cytosol and membranes through a "myristoyl switch" mechanism. However, the relevance of AMPK myristoylation for metabolic signaling in cells and in vivo is unclear. Here, we generated knockin mice with a Gly2-to-alanine point mutation of AMPKß1 (ß1-G2A). We demonstrate that non-myristoylated AMPKß1 has reduced stability but is associated with increased kinase activity and phosphorylation of the Thr172 activation site in the AMPK α subunit. Using proximity ligation assays, we show that loss of ß1 myristoylation impedes colocalization of the phosphatase PPM1A/B with AMPK in cells. Mice carrying the ß1-G2A mutation have improved metabolic health with reduced adiposity, hepatic lipid accumulation, and insulin resistance under conditions of high-fat diet-induced obesity.


Assuntos
Proteínas Quinases Ativadas por AMP , Fígado Gorduroso , Animais , Camundongos , Fosforilação , Proteínas Quinases Ativadas por AMP/metabolismo , Dieta Hiperlipídica , Processamento de Proteína Pós-Traducional , Obesidade , Ácido Mirístico/metabolismo , Camundongos Endogâmicos C57BL , Proteína Fosfatase 2C/metabolismo
3.
Front Physiol ; 13: 859246, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392375

RESUMO

The AMP-activated protein kinase (AMPK) is a central regulator of cellular energy balance and metabolism and binds glycogen, the primary storage form of glucose in liver and skeletal muscle. The effects of disrupting whole-body AMPK-glycogen interactions on exercise capacity and substrate utilization during exercise in vivo remain unknown. We used male whole-body AMPK double knock-in (DKI) mice with chronic disruption of AMPK-glycogen binding to determine the effects of DKI mutation on exercise capacity, patterns of whole-body substrate utilization, and tissue metabolism during exercise. Maximal treadmill running speed and whole-body energy utilization during submaximal running were determined in wild type (WT) and DKI mice. Liver and skeletal muscle glycogen and skeletal muscle AMPK α and ß2 subunit content and signaling were assessed in rested and maximally exercised WT and DKI mice. Despite a reduced maximal running speed and exercise time, DKI mice utilized similar absolute amounts of liver and skeletal muscle glycogen compared to WT. DKI skeletal muscle displayed reduced AMPK α and ß2 content versus WT, but intact relative AMPK phosphorylation and downstream signaling at rest and following exercise. During submaximal running, DKI mice displayed an increased respiratory exchange ratio, indicative of greater reliance on carbohydrate-based fuels. In summary, whole-body disruption of AMPK-glycogen interactions reduces maximal running capacity and skeletal muscle AMPK α and ß2 content and is associated with increased skeletal muscle glycogen utilization. These findings highlight potential unappreciated roles for AMPK in regulating tissue glycogen dynamics and expand AMPK's known roles in exercise and metabolism.

4.
Cell Rep ; 38(7): 110365, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172150

RESUMO

AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1) are metabolic kinases that co-ordinate nutrient supply with cell growth. AMPK negatively regulates mTORC1, and mTORC1 reciprocally phosphorylates S345/7 in both AMPK α-isoforms. We report that genetic or torin1-induced loss of α2-S345 phosphorylation relieves suppression of AMPK signaling; however, the regulatory effect does not translate to α1-S347 in HEK293T or MEF cells. Dephosphorylation of α2-S345, but not α1-S347, transiently targets AMPK to lysosomes, a cellular site for activation by LKB1. By mass spectrometry, we find that α2-S345 is basally phosphorylated at 2.5-fold higher stoichiometry than α1-S347 in HEK293T cells and, unlike α1, phosphorylation is partially retained after prolonged mTORC1 inhibition. Loss of α2-S345 phosphorylation in endogenous AMPK fails to sustain growth of MEFs under amino acid starvation conditions. These findings uncover an α2-specific mechanism by which AMPK can be activated at lysosomes in the absence of changes in cellular energy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Lisossomos/metabolismo , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Sequência de Aminoácidos , Animais , Ativação Enzimática , Feminino , Quinase 3 da Glicogênio Sintase/química , Quinase 3 da Glicogênio Sintase/metabolismo , Células HEK293 , Células HeLa , Humanos , Isoenzimas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
5.
Int J Mol Sci ; 22(17)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34502525

RESUMO

The AMP-activated protein kinase (AMPK), a central regulator of cellular energy balance and metabolism, binds glycogen via its ß subunit. However, the physiological effects of disrupting AMPK-glycogen interactions remain incompletely understood. To chronically disrupt AMPK-glycogen binding, AMPK ß double knock-in (DKI) mice were generated with mutations in residues critical for glycogen binding in both the ß1 (W100A) and ß2 (W98A) subunit isoforms. We examined the effects of this DKI mutation on whole-body substrate utilization, glucose homeostasis, and tissue glycogen dynamics. Body composition, metabolic caging, glucose and insulin tolerance, serum hormone and lipid profiles, and tissue glycogen and protein content were analyzed in chow-fed male DKI and age-matched wild-type (WT) mice. DKI mice displayed increased whole-body fat mass and glucose intolerance associated with reduced fat oxidation relative to WT. DKI mice had reduced liver glycogen content in the fed state concomitant with increased utilization and no repletion of skeletal muscle glycogen in response to fasting and refeeding, respectively, despite similar glycogen-associated protein content relative to WT. DKI liver and skeletal muscle displayed reductions in AMPK protein content versus WT. These findings identify phenotypic effects of the AMPK DKI mutation on whole-body metabolism and tissue AMPK content and glycogen dynamics.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adiposidade , Glicogênio/metabolismo , Metabolismo dos Lipídeos , Proteínas Quinases Ativadas por AMP/genética , Animais , Glicogênio/genética , Camundongos , Camundongos Transgênicos , Oxirredução , Ligação Proteica
6.
Mol Metab ; 41: 101048, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32610071

RESUMO

OBJECTIVE: Glycogen is a major energy reserve in liver and skeletal muscle. The master metabolic regulator AMP-activated protein kinase (AMPK) associates with glycogen via its regulatory ß subunit carbohydrate-binding module (CBM). However, the physiological role of AMPK-glycogen binding in energy homeostasis has not been investigated in vivo. This study aimed to determine the physiological consequences of disrupting AMPK-glycogen interactions. METHODS: Glycogen binding was disrupted in mice via whole-body knock-in (KI) mutation of either the AMPK ß1 (W100A) or ß2 (W98A) isoform CBM. Systematic whole-body, tissue and molecular phenotyping was performed in KI and respective wild-type (WT) mice. RESULTS: While ß1 W100A KI did not affect whole-body metabolism or exercise capacity, ß2 W98A KI mice displayed increased adiposity and impairments in whole-body glucose handling and maximal exercise capacity relative to WT. These KI mutations resulted in reduced total AMPK protein and kinase activity in liver and skeletal muscle of ß1 W100A and ß2 W98A, respectively, versus WT mice. ß1 W100A mice also displayed loss of fasting-induced liver AMPK total and α-specific kinase activation relative to WT. Destabilisation of AMPK was associated with increased fat deposition in ß1 W100A liver and ß2 W98A skeletal muscle versus WT. CONCLUSIONS: These results demonstrate that glycogen binding plays critical roles in stabilising AMPK and maintaining cellular, tissue and whole-body energy homeostasis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/fisiologia , Glicogênio/metabolismo , Proteínas Quinases Ativadas por AMP/fisiologia , Animais , Feminino , Glucose/metabolismo , Glicogênio/fisiologia , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Fosforilação , Ligação Proteica
7.
FEBS J ; 287(10): 2087-2104, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32196931

RESUMO

Meteorin-like (metrnl) is a recently identified adipomyokine that beneficially affects glucose metabolism; however, its underlying mechanism of action is not completely understood. We here show that the level of metrnl increases in vitro under electrical pulse stimulation and in vivo in exercised mice, suggesting that metrnl is secreted during muscle contractions. In addition, metrnl increases glucose uptake via the calcium-dependent AMPKα2 pathway in skeletal muscle cells and increases the phosphorylation of HDAC5, a transcriptional repressor of GLUT4, in an AMPKα2-dependent manner. Phosphorylated HDAC5 interacts with 14-3-3 proteins and sequesters them in the cytoplasm, resulting in the activation of GLUT4 transcription. An intraperitoneal injection of recombinant metrnl improved glucose tolerance in mice with high-fat-diet-induced obesity or type 2 diabetes, but not in AMPK ß1ß2 muscle-specific null mice. Metrnl improves glucose metabolism via AMPKα2 and is a promising therapeutic candidate for glucose-related diseases such as type 2 diabetes.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Diabetes Mellitus Tipo 2/genética , Histona Desacetilases/genética , Fatores de Crescimento Neural/genética , Obesidade/genética , Proteínas 14-3-3/genética , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Estimulação Elétrica , Glucose/genética , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Humanos , Resistência à Insulina/genética , Camundongos , Contração Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fatores de Crescimento Neural/farmacologia , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/patologia , Condicionamento Físico Animal , Proteínas Recombinantes/farmacologia
8.
FASEB J ; 33(12): 14825-14840, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31670977

RESUMO

ATPase inhibitory factor 1 (IF1) is an ATP synthase-interacting protein that suppresses the hydrolysis activity of ATP synthase. In this study, we observed that the expression of IF1 was up-regulated in response to electrical pulse stimulation of skeletal muscle cells and in exercized mice and healthy men. IF1 stimulates glucose uptake via AMPK in skeletal muscle cells and primary cultured myoblasts. Reactive oxygen species and Rac family small GTPase 1 (Rac1) function in the upstream and downstream of AMPK, respectively, in IF1-mediated glucose uptake. In diabetic animal models, the administration of recombinant IF1 improved glucose tolerance and down-regulated blood glucose level. In addition, IF1 inhibits ATP hydrolysis by ß-F1-ATPase in plasma membrane, thereby increasing extracellular ATP and activating the protein kinase B (Akt) pathway, ultimately leading to glucose uptake. Thus, we suggest that IF1 is a novel myokine and propose a mechanism by which AMPK and Akt contribute independently to IF1-mediated improvement of glucose tolerance impairment. These results demonstrate the importance of IF1 as a potential antidiabetic agent.-Lee, H. J., Moon, J., Chung, I., Chung, J. H., Park, C., Lee, J. O., Han, J. A., Kang, M. J., Yoo, E. H., Kwak, S.-Y., Jo, G., Park, W., Park, J., Kim, K. M., Lim, S., Ngoei, K. R. W., Ling, N. X. Y., Oakhill, J. S., Galic, S., Murray-Segal, L., Kemp, B. E., Mantzoros, C. S., Krauss, R. M., Shin, M.-J., Kim, H. S. ATP synthase inhibitory factor 1 (IF1), a novel myokine, regulates glucose metabolism by AMPK and Akt dual pathways.


Assuntos
Glucose/metabolismo , Mioblastos/metabolismo , Proteínas/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Trifosfato de Adenosina/metabolismo , Adulto , Animais , Linhagem Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipoglicemiantes/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases/metabolismo , Proteínas/genética , Proteínas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes/uso terapêutico , Proteína Inibidora de ATPase
9.
Hepatol Commun ; 3(1): 84-98, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30619997

RESUMO

Adenosine monophosphate-activated protein kinase (AMPK) regulates multiple signaling pathways involved in glucose and lipid metabolism in response to changes in hormonal and nutrient status. Cell culture studies have shown that AMPK phosphorylation and inhibition of the rate-limiting enzyme in the mevalonate pathway 3-hydroxy-3-methylglutaryl (HMG) coenzyme A (CoA) reductase (HMGCR) at serine-871 (Ser871; human HMGCR Ser872) suppresses cholesterol synthesis. In order to evaluate the role of AMPK-HMGCR signaling in vivo, we generated mice with a Ser871-alanine (Ala) knock-in mutation (HMGCR KI). Cholesterol synthesis was significantly suppressed in wild-type (WT) but not in HMGCR KI hepatocytes in response to AMPK activators. Liver cholesterol synthesis and cholesterol levels were significantly up-regulated in HMGCR KI mice. When fed a high-carbohydrate diet, HMGCR KI mice had enhanced triglyceride synthesis and liver steatosis, resulting in impaired glucose homeostasis. Conclusion: AMPK-HMGCR signaling alone is sufficient to regulate both cholesterol and triglyceride synthesis under conditions of a high-carbohydrate diet. Our findings highlight the tight coupling between the mevalonate and fatty acid synthesis pathways as well as revealing a role of AMPK in suppressing the deleterious effects of a high-carbohydrate diet.

10.
Elife ; 72018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29433631

RESUMO

AMP-activated protein kinase (AMPK) is a known regulator of whole-body energy homeostasis, but the downstream AMPK substrates mediating these effects are not entirely clear. AMPK inhibits fatty acid synthesis and promotes fatty acid oxidation by phosphorylation of acetyl-CoA carboxylase (ACC) 1 at Ser79 and ACC2 at Ser212. Using mice with Ser79Ala/Ser212Ala knock-in mutations (ACC DKI) we find that inhibition of ACC phosphorylation leads to reduced appetite in response to fasting or cold exposure. At sub-thermoneutral temperatures, ACC DKI mice maintain normal energy expenditure and thermogenesis, but fail to increase appetite and lose weight. We demonstrate that the ACC DKI phenotype can be mimicked in wild type mice using a ghrelin receptor antagonist and that ACC DKI mice have impaired orexigenic responses to ghrelin, indicating ACC DKI mice have a ghrelin signaling defect. These data suggest that therapeutic strategies aimed at inhibiting ACC phosphorylation may suppress appetite following metabolic stress.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Apetite , Temperatura Baixa , Jejum , Termogênese , Acetil-CoA Carboxilase/genética , Animais , Metabolismo Energético , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Transdução de Sinais
11.
J Autoimmun ; 88: 131-138, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29103803

RESUMO

OBJECTIVE: Antiphospholipid syndrome (APS) is a systemic autoimmune disorder of young adults associated with devastating pregnancy complications (recurrent miscarriages, preeclampsia and low birth weight) and vascular complications including thrombosis. The key components implicated in pathogenesis of APS are the complement cascade and tissue factor (TF) activity causing inflammation and coagulation. Purinergic signalling involving catabolism of ATP to adenosine by cell-surface enzymes CD39 and CD73 has anti-inflammatory and anti-thrombotic effects. We studied whether activities of CD39 and CD73 are important in preventing the development of miscarriages in APS. METHODS: We studied frequency of miscarriages and decidual pathology following passive transfer of human aPL-ab to pregnant wildtype mice, and mice deficient in CD39 and CD73, and also transgenic mice exhibiting 2-3X higher CD39 activity. RESULTS: aPL-ab infusion in pregnant CD39-or CD73-knockout mice triggers an increase in miscarriages, associated with increased TF expression and complement deposition as well as elevated oxidative stress and pro-inflammatory TNF-α and IL-10 expression within the placental decidua. In contrast, aPL-ab induced miscarriages are prevented in mice over-expressing CD39, with reduced decidual TF expression and C3d deposition, diminished lipid peroxidation (4-hydroxynonenal or 4-HNE positive lipid adducts), and reduced TNF-α expression. CONCLUSION: We demonstrate a protective role for CD39 in APS and provide rationale for both the development of endothelial cell-targeted soluble CD39 as a novel therapeutic for APS and analysis of perturbations in the purinergic pathway to explain human disease.


Assuntos
Aborto Espontâneo/imunologia , Anticorpos Antifosfolipídeos/metabolismo , Antígenos CD/metabolismo , Síndrome Antifosfolipídica/imunologia , Apirase/metabolismo , Complicações na Gravidez/imunologia , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Adulto , Animais , Antígenos CD/genética , Apirase/genética , Complemento C3d/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imunização Passiva , Inflamação , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Gravidez , Tromboplastina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Diabetes ; 62(6): 2026-35, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23364452

RESUMO

Islet allograft survival limits the long-term success of islet transplantation as a potential curative therapy for type 1 diabetes. A number of factors compromise islet survival, including recurrent diabetes. We investigated whether CD39, an ectonucleotidase that promotes the generation of extracellular adenosine, would mitigate diabetes in the T cell-mediated multiple low-dose streptozotocin (MLDS) model. Mice null for CD39 (CD39KO), wild-type mice (WT), and mice overexpressing CD39 (CD39TG) were subjected to MLDS. Adoptive transfer experiments were performed to delineate the efficacy of tissue-restricted overexpression of CD39. The role of adenosine signaling was examined using mutant mice and pharmacological inhibition. The susceptibility to MLDS-induced diabetes was influenced by the level of expression of CD39. CD39KO mice developed diabetes more rapidly and with higher frequency than WT mice. In contrast, CD39TG mice were protected. CD39 overexpression conferred protection through the activation of adenosine 2A receptor and adenosine 2B receptor. Adoptive transfer experiments indicated that tissue-restricted overexpression of CD39 conferred robust protection, suggesting that this may be a useful strategy to protect islet grafts from T cell-mediated injury.


Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Diabetes Mellitus Experimental/metabolismo , Animais , Antígenos CD/genética , Apirase/genética , Diabetes Mellitus Experimental/genética , Citometria de Fluxo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Receptores Purinérgicos P1/genética , Receptores Purinérgicos P1/metabolismo
13.
Xenotransplantation ; 15(1): 20-6, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18333910

RESUMO

BACKGROUND: Despite overcoming xenograft hyperacute rejection (HAR), Gal (galactose-alpha1,3-galactose) expression may not be completely eliminated from the alpha1,3-galactosyltransferase gene knockout (Gal KO) pig because of alternative galactosyltransferases. Whether low levels of "residual" Gal are still susceptible to either complement fixing or non-complement fixing antibody beyond the HAR barrier remains unknown. Furthermore, it would be impossible to analyze the immune response specific to low-level Gal in a xenograft setting given the multitude of xenoantigens that could induce a recipient response. To investigate this question, we therefore used a skin graft model in BALB/c mice where the sole difference between donor and recipient was the expression of Gal, where rejection is caused by passively administered anti-Gal monoclonal antibody and where HAR does not occur. METHODS: Gal expression over time was examined by immunohistochemistry in wildtype-to-Gal KO skin grafts. Graft rejection in response to passively administered anti-Gal monoclonal antibody at early and late time points was studied to determine changes in susceptibility to antibody. To independently test the effect of reduced Gal expression on antibody-mediated rejection, we used two separate lines of alpha1,2-fucosyltransferase transgenic mice as skin donors in the model. These mice have known reduced but different levels of Gal as determined by flow cytometry on peripheral blood leukocytes. RESULTS: Gal expression on skin grafts diminished with time with a corresponding reduction in susceptibility to antibody-mediated rejection. Skin grafts at day 30 (n = 7) and 150 (n = 11) had a rejection rate of 100% and 45% respectively in response to non-complement fixing anti-Gal antibody administered to the recipient. Similar results were demonstrated with a complement fixing anti-Gal antibody. When alpha1,2-fucosyltransferase transgenic mice skin was used in the model, the line with lowest level of Gal expression was resistant to antibody-induced rejection with a rate 0% (n = 9) vs. 60% (n = 5) in the alternative line with relatively more Gal expressed but still much less than normal mice. CONCLUSIONS: Resistance to anti-Gal antibody-mediated damage in the model was observed in skin grafts 100 to 150 days post-grafting but not earlier and was associated with a reduction in Gal expression. It is possible that below a threshold level of Gal expression, the grafts were not susceptible to anti-Gal antibody.


Assuntos
Galactose , Rejeição de Enxerto , Transplante de Pele , Transplante Heterólogo , Animais , Anticorpos Monoclonais/metabolismo , Galactose/química , Galactose/metabolismo , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Rejeição de Enxerto/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Pele/citologia , Pele/metabolismo
14.
Transplantation ; 83(5): 653-5, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17353789

RESUMO

BACKGROUND: T-cell apoptosis is an important regulatory mechanism in transplant tolerance. The aim of this study was to identify specific apoptotic molecules important for tolerance induction. METHODS: Mice expressing the human Bcl-2 molecule in T cells or Bim -/- mice were used as islet allograft or rat islet xenograft recipients and treated with CTLA4-Fc and MR1 costimulation blockade. RESULTS: hBcl-2 transgenic mice and Bim -/- accepted islet allografts and rat islet xenografts for more than 100 days, similar to wildtype controls. Changes in the dose of the CTLA4-Fc and MR1 did not lead to differences in graft survival and there were no differences in the percentage of CD4+ T cells expressing Fas, CD25, or undergoing apoptosis. CONCLUSIONS: Inhibition of the passive cell death pathway in T cells did not block tolerance induction, suggesting that the mechanism by which apoptosis regulates the alloimmune response is more complex than first thought.


Assuntos
Morte Celular/fisiologia , Tolerância Imunológica , Transplante das Ilhotas Pancreáticas/imunologia , Abatacepte , Animais , Animais Geneticamente Modificados , Sobrevivência de Enxerto , Humanos , Imunoconjugados/genética , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos
15.
Transplantation ; 82(10): 1362-9, 2006 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-17130786

RESUMO

BACKGROUND: There are conflicting reports on the importance of antibody and cell-mediated mechanisms and the influence of TH1 or TH2 cytokines on acute vascular xenograft rejection. We sought to resolve some of the recent discrepancies in the rat-to-mouse xenograft model where different recipient strains are used and investigated the TH1/TH2 influence on rejection. METHODS: Lewis rat heart xenograft survival was compared between BALB/c and C57BL/6 recipients. Antigraft antibody deposition, serum anti-rat antibody levels and B-cell deficient recipients were used to examine the contribution of antibody to rejection. To further investigate a TH1 or TH2 bias effect in vivo, we used BALB/c STAT4 knockout (KO) and STAT6 KO recipient mice. Experiments were repeated with rat skin xenografts to examine TH1/TH2 influences on cell-mediated rejection. RESULTS: The median survival (MS) of rat heart xenografts in BALB/c and C57BL/6 mice was five and eight days, respectively (P = 0.002). The MS in B-cell deficient mice was 16 days (P < 0.001). The MS in STAT4 KO and STAT6 KO mice was six and seven days respectively (P = 0.009). All non-B-cell deficient recipients showed strong IgM deposition and histological features of both cellular and antibody-mediated rejection. There was no correlation between serum anti-rat antibody levels and graft outcome or graft deposition. There was no survival difference of skin xenografts in BALB/c, C57BL/6, B-cell deficient, STAT6 KO, or STAT4 KO mice (8-9 days). CONCLUSIONS: Both humoral and cell-mediated immunity have significant roles in vascularized heart xenograft rejection. TH1/TH2 biases minimally affect rejection through humoral but not cellular immunity.


Assuntos
Sobrevivência de Enxerto/imunologia , Transplante de Coração/imunologia , Transplante de Pele/imunologia , Transplante Heterólogo/imunologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Endogâmicos Lew , Fator de Transcrição STAT4/genética , Fator de Transcrição STAT6/deficiência , Fator de Transcrição STAT6/genética
16.
Diabetes ; 54(7): 2109-16, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15983212

RESUMO

Primary nonfunction of transplanted islets results in part from their sensitivity to reactive oxygen species (ROS) generated during the isolation and transplantation process. Our aim was to examine whether coexpression of antioxidant enzymes to detoxify multiple ROS increased the resistance of mouse islets to oxidative stress and improved the initial function of islet grafts. Islets from transgenic mice expressing combinations of human copper/zinc superoxide dismutase (SOD), extracellular SOD, and cellular glutathione peroxidase (Gpx-1) were subjected to oxidative stress in vitro. Relative viability after hypoxanthine/xanthine oxidase treatment was as follows: extracellular SOD + Gpx-1 + Cu/Zn SOD > extracellular SOD + Gpx-1 > extracellular SOD > wild type. Expression of all three enzymes was the only combination protective against hypoxia/reoxygenation. Islets from transgenic or control wild-type mice were then transplanted into streptozotocin-induced diabetic recipients in a syngeneic marginal islet mass model, and blood glucose levels were monitored for 7 days. In contrast to single- and double-transgenic grafts, triple-transgenic grafts significantly improved control of blood glucose compared with wild type. Our results indicate that coexpression of antioxidant enzymes has a complementary beneficial effect and may be a useful approach to reduce primary nonfunction of islet grafts.


Assuntos
Glutationa Peroxidase/genética , Estresse Oxidativo/fisiologia , Superóxido Dismutase/genética , Animais , Sequência de Bases , Glicemia/metabolismo , Clonagem Molecular , Primers do DNA , DNA Complementar/genética , Diabetes Mellitus Experimental/sangue , Isoenzimas/genética , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase , Glutationa Peroxidase GPX1
17.
Xenotransplantation ; 11(4): 323-31, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15196126

RESUMO

BACKGROUND: Important phylogenetic differences between pig and human tissues prevent xenotransplantation from becoming a clinically feasible option. Humans lack the galactose-alpha1,3-galactose (alphaGal) epitope on endothelial cell surfaces and therefore have preformed anti-alphaGal antibodies. The role of these antibodies in rejection of non-vascular xenografts remains controversial. This study investigated the role of anti-alphaGal antibodies in rejection of non-vascularized alphaGal+/+ grafts in alphaGal -/- mice. METHODS: alphaGal +/+ and alphaGal -/- pancreatic islets were transplanted under the renal capsule of streptozotocin-induced diabetic (1) alphaGal -/- mice and (2) alphaGal +/+ mice. alphaGal -/- recepients were immunized with rabbit red blood cell membranes (RRBCs) to produce elevated anti-alphaGal antibody levels. RESULTS: Six of the 18 alphaGal -/- mice rejected the alphaGal +/+ grafts within 68 days whereas indefinite graft survival was achieved in the control groups. Animals with surviving islet grafts were challenged with alphaGal +/+ skin grafts. Although all alphaGal +/+ skin grafts were rejected within 58 days, the islet grafts remained intact. This observation correlated with the level of alphaGal expression (which was very low on islets compared to skin) rather than the actual titre of anti-alphaGal antibody. DISCUSSION: The results suggest that the level of alphaGal expression plays an important role in graft survival. Therefore, its removal is important in the development of a pig islet donor for future clinical therapy.


Assuntos
Doença de Fabry , Deleção de Genes , Transplante das Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/enzimologia , Ilhotas Pancreáticas/imunologia , Transplante Homólogo , alfa-Galactosidase/imunologia , Animais , Epitopos/imunologia , Membrana Eritrocítica/imunologia , Sobrevivência de Enxerto/imunologia , Humanos , Imunização , Imunoglobulina M/imunologia , Imuno-Histoquímica , Ilhotas Pancreáticas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Transplante de Pele/imunologia , Transplante , alfa-Galactosidase/genética
18.
J Clin Invest ; 113(10): 1440-6, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15146241

RESUMO

Extracellular nucleotides play an important role in thrombosis and inflammation, triggering a range of effects such as platelet activation and recruitment, endothelial cell activation, and vasoconstriction. CD39, the major vascular nucleoside triphosphate diphosphohydrolase (NTPDase), converts ATP and ADP to AMP, which is further degraded to the antithrombotic and anti-inflammatory mediator adenosine. Deletion of CD39 renders mice exquisitely sensitive to vascular injury, and CD39-null cardiac xenografts show reduced survival. Conversely, upregulation of CD39 by somatic gene transfer or administration of soluble NTPDases has major benefits in models of transplantation and inflammation. In this study we examined the consequences of transgenic expression of human CD39 (hCD39) in mice. Importantly, these mice displayed no overt spontaneous bleeding tendency under normal circumstances. The hCD39 transgenic mice did, however, exhibit impaired platelet aggregation, prolonged bleeding times, and resistance to systemic thromboembolism. Donor hearts transgenic for hCD39 were substantially protected from thrombosis and survived longer in a mouse cardiac transplant model of vascular rejection. These thromboregulatory manifestations in hCD39 transgenic mice suggest important therapeutic potential in clinical vascular disease and in the control of serious thrombotic events that compromise the survival of porcine xenografts in primates.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/fisiologia , Antígenos CD/genética , Antígenos CD/fisiologia , Trombose/imunologia , Adenosina/sangue , Monofosfato de Adenosina/sangue , Animais , Apirase , Plaquetas/fisiologia , Transplante de Medula Óssea/imunologia , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Fenótipo , Trombose/genética , Imunologia de Transplantes
19.
Transplantation ; 77(5): 751-3, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15021840

RESUMO

The generation of Gal knockout (KO) pigs is likely to be an important advance in xenotransplantation. However, recent reports suggesting that expression of Gal may not be completely eliminated raise the possibility of a continuing anti-Gal immune response. The authors used a Gal-mismatched skin graft model to study cell-mediated anti-Gal rejection. Gal KO mice on a BALB/c or C57BL/6 background were sensitized with allogeneic or xenogeneic (rat) Gal-positive skin grafts and underwent transplantation with a secondary skin graft solely mismatched for Gal 21 days later. Most allograft-sensitized recipients rejected the secondary graft (n=26 [96%]) compared with less than half of xenograft-sensitized recipients (n=25 [44%]). An immunoglobulin (Ig) M response was detected in some xenograft-sensitized but not allograft-sensitized recipients. No recipients developed detectable anti-Gal IgG. The authors' findings contrast with previous reports that xenografts are more potent than allografts in eliciting an anti-Gal response and suggest that a predominantly cell-mediated response can mediate rejection.


Assuntos
Antígenos Heterófilos/imunologia , Dissacarídeos/imunologia , Rejeição de Enxerto/imunologia , Isoantígenos/imunologia , Transplante de Pele/imunologia , Animais , Galactosiltransferases/genética , Sobrevivência de Enxerto/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
20.
Transplantation ; 74(5): 637-45, 2002 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12352879

RESUMO

BACKGROUND: Elimination of galactose-alpha1,3-galactose (Gal), the major xenoantigen between pig and human, may extend pig-to-human xenograft survival beyond the current barrier of acute vascular rejection. However, it has been suggested that Gal is an essential molecule in the pig and that the generation of a Gal-deleted (Gal KO) pig will not be possible. Should this be the case, understanding the Gal-mediated immune response will be crucial in developing strategies to overcome pig xenograft rejection in humans. There are no existing models of xenograft rejection in which the sole difference between donor and recipient is Gal. We describe a model of exclusively Gal-mismatched skin graft rejection. METHODS: The survival of Gal skin grafts on Gal KO mice with the same genetic background was analyzed. To examine innate anti-Gal immunity, Gal KO recipients that were also deficient in T and B cells (RAG-1 KO) were used. To study the role of cognate immunity, recipients were sensitized with a primary Gal allograft before receiving a second Gal graft that was otherwise isogeneic. To test the role of anti-Gal antibodies in this model, recipients were passively immunized with a non-complement-fixing anti-Gal monoclonal antibody. RESULTS: Gal KO mice chronically reject Gal skin grafts by 100 days at a rate of 48% (n=25) on a BALB/c background and 25% (n=8) on a C57BL/6 background. The grafts had an infiltrate that consisted predominantly of CD4 T cells and macrophages, whereas recipients deficient in T and B cells were incapable of rejection and survived for more than 120 days (n=5). Sensitization with a primary Gal allograft increased the incidence and the tempo of rejection of a second Gal-only mismatched skin graft with 99% rejection that ranged from 11 to 45 days (n=26). Passive transfer of mouse IgG anti-Gal monoclonal-antibody-induced rejection in Gal KO and RAG-1/Gal double-KO recipients at a rate of 92% (n=13). CONCLUSIONS: We have established a model to study rejection based solely on a Gal mismatch. Our results indicate that non-complement-fixing anti-Gal antibody can cause rejection in the acute vascular rejection time frame and that T-cell-mediated chronic rejection will be a further barrier to overcome if Gal cannot be deleted from the pig.


Assuntos
Dissacarídeos/imunologia , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/imunologia , Transplante de Pele/imunologia , Transplante Homólogo/imunologia , Animais , Anticorpos Monoclonais/imunologia , Formação de Anticorpos , Antígenos Heterófilos/imunologia , Dissacarídeos/deficiência , Citometria de Fluxo , Rejeição de Enxerto/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante de Pele/patologia , Suínos , Transplante Homólogo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...