Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stereotact Funct Neurosurg ; 100(1): 35-43, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34535594

RESUMO

OBJECTIVE: The aim of the study was to retrospectively evaluate the effect of directional deep brain stimulation (DBS) on ataxia in an essential tremor patient population. MATERIALS AND METHODS: A retrospective chart review of documented Scale for Assessment and Rating of Ataxia (SARA) scores were analyzed using a case-control design. All subjects we evaluated were treated at a single, tertiary care academic center. We reviewed 14 patients who underwent bilateral ventral intermediate nucleus of the thalamus (VIM) implantation with microelectrode recording, with electrodeposition and segmented contact orientation confirmed via postoperative computed tomography. The main outcome was to determine change in ataxia scores between directional versus monopolar circumferential stimulation. RESULTS: Fourteen patients (9 males, median age at implantation 69 [range 63-82]) underwent surgery between October 2017 and July 2020 at the UNC Movement Disorders Center. SARA scores between directional stimulation and monopolar circumferential stimulation demonstrated a significant reduction in total scores with best possible segmented stimulation (n = 13, p < 0.0001, 95% confidence interval [CI] -3.496 to -6.789). This difference remained statistically significant even after removing the SARA tremor subscore (n = 13, p < 0.0001, 95% CI -3.155 to -6.274). In line with prior reports, SARA score changes from the preoperative state were generally worsened when applying monopolar circumferential stimulation bilaterally (n = 13, p = 0.655; 95% CI -2.836 to 4.359), but improved with directional stimulation (n = 13, p = 0.010; 95% CI -1.216 to -7.547). CONCLUSION: This retrospective analysis appears to show evidence for improved outcomes through directional stimulation in bilateral VIM DBS implantation with reduction of ataxic side effects that have traditionally plagued postoperative results, all while providing optimized tremor reduction via stimulation.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Ataxia/terapia , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/métodos , Tremor Essencial/cirurgia , Humanos , Masculino , Estudos Retrospectivos , Tálamo/cirurgia
2.
J Law Biosci ; 3(1): 196-201, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27774242
3.
Eur J Neurosci ; 43(2): 230-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26505737

RESUMO

The role of higher-order thalamic structures in sensory processing remains poorly understood. Here, we used the ferret (Mustela putorius furo) as a novel model species for the study of the lateral posterior (LP)-pulvinar complex and its structural and functional connectivity with area 17 [primary visual cortex (V1)]. We found reciprocal anatomical connections between the lateral part of the LP nucleus of the LP-pulvinar complex (LPl) and V1. In order to investigate the role of this feedback loop between LPl and V1 in shaping network activity, we determined the functional interactions between LPl and the supragranular, granular and infragranular layers of V1 by recording multiunit activity and local field potentials. Coherence was strongest between LPl and the supragranular V1, with the most distinct peaks in the delta and alpha frequency bands. Inter-area interaction measured by spike-phase coupling identified the delta frequency band being dominated by the infragranular V1 and multiple frequency bands that were most pronounced in the supragranular V1. This inter-area coupling was differentially modulated by full-field synthetic and naturalistic visual stimulation. We also found that visual responses in LPl were distinct from those in V1 in terms of their reliability. Together, our data support a model of multiple communication channels between LPl and the layers of V1 that are enabled by oscillations in different frequency bands. This demonstration of anatomical and functional connectivity between LPl and V1 in ferrets provides a roadmap for studying the interaction dynamics during behaviour, and a template for identifying the activity dynamics of other thalamo-cortical feedback loops.


Assuntos
Neurônios/fisiologia , Pulvinar/citologia , Pulvinar/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Potenciais de Ação , Animais , Ondas Encefálicas , Feminino , Furões , Vias Neurais/citologia , Vias Neurais/fisiologia , Estimulação Luminosa
4.
J Law Biosci ; 2(2): 336-364, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27774198

RESUMO

Dehumanization is anecdotally and historically associated with reduced empathy for the pain of dehumanized individuals and groups and with psychological and legal denial of their human rights and extreme violence against them. We hypothesize that 'empathy' for the pain and suffering of dehumanized social groups is automatically reduced because, as the research we review suggests, an individual's neural mechanisms of pain empathy best respond to (or produce empathy for) the pain of people whom the individual automatically or implicitly associates with her or his own species. This theory has implications for the philosophical conception of 'human' and of 'legal personhood' in human rights jurisprudence. It further has implications for First Amendment free speech jurisprudence, including the doctrine of 'corporate personhood' and consideration of the potential harm caused by dehumanizing hate speech. We suggest that the new, social neuroscience of empathy provides evidence that both the vagaries of the legal definition or legal fiction of 'personhood' and hate speech that explicitly and implicitly dehumanizes may (in their respective capacities to artificially humanize or dehumanize) manipulate the neural mechanisms of pain empathy in ways that could pose more of a true threat to human rights and rights-based democracy than previously appreciated.

5.
Front Neurol ; 5: 213, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25368601

RESUMO

CONTEXT: Despite its widespread use, the precise mechanism of action of Deep Brain Stimulation (DBS) therapy remains unknown. The modern urgency to publish more and new data can obscure previously learned lessons by the giants who have preceded us and whose shoulders we now stand upon. Wilder Penfield extensively studied the effects of artificial electrical brain stimulation and his comments on the subject are still very relevant today. In particular, he noted two very different (and seemingly opposite) effects of stimulation within the human brain. In some structures, artificial electrical stimulation has an effect, which mimics ablation, while, in other structures, it produces a stimulatory effect on that tissue. HYPOTHESIS: The hypothesis of this paper is fourfold. First, it proposes that some neural circuits are widely synchronized with other neural circuits, while some neural circuits are unsynchronized and operate independently. Second, it proposes that artificial high-frequency electrical stimulation of a synchronized neural circuit results in an ablative effect, but artificial high-frequency electrical stimulation of an unsynchronized neural circuit results in a stimulatory effect. Third, it suggests a part of the mechanism by which large-scale physiologic synchronization of widely distributed independently processed information streams may occur. This may be the neural mechanism underlying Penfield's "centrencephalic system," which he emphasized so many years ago. Fourth, it outlines the specific anatomic distribution of this physiologic synchronization, which Penfield has already clearly delineated as the distribution of his centrencephalic system. EVIDENCE: This paper draws on a brief overview of previous theory regarding the mechanism of action of DBS and on historical, as well as widely known modern clinical data regarding the observed effects of stimulation delivered to various targets within the brain. Basic science investigations, which support the hypothesis are also cited. CONCLUSION: This paper proposes a novel hypothesis for the mechanism of action of DBS, which was conceptually foreshadowed by Wilder Penfield decades ago.

6.
Mov Disord ; 22(3): 377-81, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17177184

RESUMO

The apolipoprotein E (APOE) epsilon2 allele has been associated with both Parkinson's disease (PD) and lower low-density lipoprotein cholesterol (LDL-C). We tested the hypothesis that lower LDL-C may be associated with PD. This case-control study used fasting lipid profiles obtained from 124 PD cases and 112 controls. The PD cases were recruited from consecutive cases presenting at our tertiary Movement Disorder Clinic, and the controls were recruited from the spouse populations of the same clinic. Multivariate odds ratios (ORs) and 95% confidence intervals (CIs) were calculated from unconditional logistic regressions, adjusting for age, gender, smoking status, and use of cholesterol-lowering agents. Lower LDL-C concentrations were associated with a higher occurrence of PD. Compared with participants with the highest LDL-C (> or =138 mg/dL), the OR was 2.2 (95% CI = 0.9-5.1) for participants with LDL-C of 115 to 137, 3.5 (95% CI = 1.6-8.1) for LDL-C of 93 to 114, and 2.6 (95% CI = 1.1-5.9) for LDL-C of < or = 92. Interestingly, use of either cholesterol-lowering drugs, or statins alone, was related to lower PD occurrence. Thus, our data provide preliminary evidence that low LDL-C may be associated with higher occurrence of PD, and/or that statin use may lower PD occurrence, either of which finding warrants further investigation.


Assuntos
LDL-Colesterol/metabolismo , Doença de Parkinson/metabolismo , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...