Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 1(3): 411-22, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11702952

RESUMO

Previously, we demonstrated that Shh acts early in the development of the axial skeleton, to induce a prochondrogenic response to later BMP signaling. Here, we demonstrate that somitic expression of the transcription factor Nkx3.2 is initiated by Shh and sustained by BMP signals. Misexpression of Nkx3.2 in somitic tissue confers a prochondrogenic response to BMP signals. The transcriptional repressor activity of Nkx3.2 is essential for this factor to promote chondrogenesis. Conversely, a "reverse function" mutant of Nkx3.2 that has been converted into a transcriptional activator inhibits axial chondrogenesis in vivo. We conclude that Nkx3.2 is a critical mediator of the actions of Shh during axial cartilage formation, acting to inhibit expression of factors that interfere with the prochondrogenic effects of BMPs.


Assuntos
Padronização Corporal/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Condrogênese/fisiologia , Proteínas da Matriz Extracelular , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Agrecanas , Animais , Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Células COS , Proteínas de Transporte , Embrião de Galinha , Colágeno Tipo IX/metabolismo , Meios de Cultura Livres de Soro , Proteínas de Ligação a DNA/metabolismo , Indução Embrionária , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter/genética , Proteínas Hedgehog , Proteínas de Homeodomínio/genética , Hibridização In Situ , Lectinas Tipo C , Fatores de Transcrição Box Pareados , Proteínas/metabolismo , Proteoglicanas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Fatores de Transcrição/genética
2.
Development ; 128(19): 3855-66, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11585810

RESUMO

Little is known about the genesis and patterning of tendons and other connective tissues, mostly owing to the absence of early markers. We have found that Scleraxis, a bHLH transcription factor, is a highly specific marker for all the connective tissues that mediate attachment of muscle to bone in chick and mouse, including the limb tendons, and show that early scleraxis expression marks the progenitor cell populations for these tissues. In the early limb bud, the tendon progenitor population is found in the superficial proximomedial mesenchyme. Using the scleraxis gene as a marker we show that these progenitors are induced by ectodermal signals and restricted by bone morphogenetic protein (BMP) signaling within the mesenchyme. Application of Noggin protein antagonizes this endogenous BMP activity and induces ectopic scleraxis expression. However, the presence of excess tendon progenitors does not lead to the production of additional or longer tendons, indicating that additional signals are required for the final formation of a tendon. Finally, we show that the endogenous expression of noggin within the condensing digit cartilage contributes to the induction of distal tendons.


Assuntos
Tendões/citologia , Tendões/embriologia , Fatores de Transcrição/metabolismo , Animais , Proteínas Aviárias , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Biomarcadores , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte , Embrião de Galinha , Tecido Conjuntivo/embriologia , Tecido Conjuntivo/metabolismo , Ectoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades/citologia , Botões de Extremidades/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Tendões/metabolismo , Fatores de Transcrição/genética
3.
Dev Biol ; 231(1): 164-74, 2001 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11180960

RESUMO

The anterior-posterior gut pattern is formed from three broad domains: fore-, mid-, and hindgut that have distinct functional, morphological, and molecular boundaries. The stomach demarcates the posterior boundary of the foregut. Avian stomachs are composed of two chambers: the anterior chamber (proventriculus) and the thick muscular posterior chamber (gizzard). Expression of candidate pattern formation control factors are restricted in the chick stomach regions such that Bmp4 and Wnt5a are not expressed in the gizzard. We previously implicated Bmp4 as controlling growth and differentiation of the gut musculature. Bmp4 is not expressed in the developing gizzard but is expressed in the rest of the gut including the adjacent proventriculus and midgut. Bapx1 (Nkx3.2) is expressed in the gizzard musculature but not in the proventriculus or midgut. We show ectopic expression of Bapx1 in the proventriculus results in a gizzard-like morphology and inhibits the normal proventricular expression of Bmp4 and Wnt5a. Overexpression of a reverse-function Bapx1 construct can result in a small stomach and ectopic extension of Bmp4 and Wnt5a expression into the gizzard. We suggest the role of Bapx1 is to regulate the expression of Bmp4 and Wnt5a to pattern the avian stomach.


Assuntos
Moela das Aves/embriologia , Proteínas de Homeodomínio/fisiologia , Proteínas Nucleares , Animais , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/fisiologia , Embrião de Galinha , Fatores de Transcrição Box Pareados , Fatores de Transcrição/fisiologia , Proteína Homeobox PITX2
4.
Genes Dev ; 13(2): 225-37, 1999 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-9925646

RESUMO

Previous work has indicated that signals from the floor plate and notochord promote chondrogenesis of the somitic mesoderm. These tissues, acting through the secreted signaling molecule Sonic hedgehog (Shh), appear to be critical for the formation of the sclerotome. Later steps in the differentiation of sclerotome into cartilage may be independent of the influence of these axial tissues. Although the signals involved in these later steps have not yet been pinpointed, there is substantial evidence that the analogous stages of limb bud chondrogenesis require bone morphogenetic protein (BMP) signaling. We show here that presomitic mesoderm (psm) cultured in the presence of Shh will differentiate into cartilage, and that the later stages of this differentiation process specifically depend on BMP signaling. We find that Shh not only acts in collaboration with BMPs to induce cartilage, but that it changes the competence of target cells to respond to BMPs. In the absence of Shh, BMP administration induces lateral plate gene expression in cultured psm. After exposure to Shh, BMP signaling no longer induces expression of lateral plate markers but now induces robust chondrogenesis in cultured psm. Shh signals are required only transiently for somitic chondrogenesis in vitro, and act to provide a window of competence during which time BMP signals can induce chondrogenic differentiation. Our findings suggest that chondrogenesis of somitic tissues can be divided into two separate phases: Shh-mediated generation of precursor cells, which are competent to initiate chondrogenesis in response to BMP signaling, and later exposure to BMPs, which act to trigger chondrogenic differentiation.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Condrócitos/citologia , Indução Embrionária/efeitos dos fármacos , Proteínas/farmacologia , Receptores de Fatores de Crescimento , Transdução de Sinais , Somitos/citologia , Transativadores , Animais , Proteínas Sanguíneas/farmacologia , Receptores de Proteínas Morfogenéticas Ósseas , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/farmacologia , Proteínas de Transporte , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Embrião de Galinha , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Meios de Cultivo Condicionados , Técnicas de Cultura , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas Hedgehog , Fragmentos de Peptídeos/farmacologia , Proteínas/genética , Proteínas/fisiologia , RNA Mensageiro/análise , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Somitos/efeitos dos fármacos , Somitos/metabolismo , Fatores de Tempo
5.
Development ; 122(5): 1449-66, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-8625833

RESUMO

The vertebrate Hox genes have been shown to be important for patterning the primary and secondary axes of the developing vertebrate embryo. The function of these genes along the primary axis of the embryo has been generally interpreted in the context of positional specification and homeotic transformation of axial structures. The way in which these genes are expressed and function during the development of the secondary axes, particularly the limb, is less clear. In order to provide a reference for understanding the role of the Hox genes in limb patterning, we isolated clones of 23 Hox genes expressed during limb development, characterized their expression patterns and analyzed their regulation by the signalling centers which pattern the limb. The expression patterns of the Abd-B-related Hoxa and Hoxd genes have previously been partially characterized; however, our study reveals that these genes are expressed in patterns more dynamic and complex than generally appreciated, only transiently approximating simple, concentric, nested domains. Detailed analysis of these patterns suggests that the expression of each of the Hoxa and Hoxd genes is regulated in up to three independent phases. Each of these phases appears to be associated with the specification and patterning of one of the proximodistal segments of the limb (upper arm, lower arm and hand). Interestingly, in the last of these phases, the expression of the Hoxd genes violates the general rule of spatial and temporal colinearity of Hox gene expression with gene order along the chromosome. In contrast to the Abd-B-related Hoxa and Hoxd genes, which are expressed in both the fore and hind limbs, different sets of Hoxc genes are expressed in the two limbs. There is a correlation between the relative position of these genes along the chromosome and the axial level of the limb bud in which they are expressed. The more 3' genes are expressed in the fore limb bud while the 5' genes are expressed in the hind limb bud; intermediate genes are transcribed in both limbs. However, there is no clear correlation between the relative position of the genes along the chromosome and their expression domains within the limb. With the exception of Hoxc-11, which is transcribed in a posterior portion of the hind limb, Hoxc gene expression is restricted to the anterior/proximal portion of the limb bud. Importantly, comparison of the distributions of Hoxc-6 RNA and protein products reveals posttranscriptional regulation of this gene, suggesting that caution must be exercised in interpreting the functional significance of the RNA distribution of any of the vertebrate Hox genes. To understand the genesis of the complex patterns of Hox gene expression in the limb bud, we examined the propagation of Hox gene expression relative to cell proliferation. We find that shifts in Hox gene expression cannot be attributed to passive expansion due to cell proliferation. Rather, phase-specific Hox gene expression patterns appear to result from a context-dependent response of the limb mesoderm to Sonic hedgehog. Sonic hedgehog (the patterning signal from the Zone of Polarizing Activity) is known to be able to activate Hoxd gene expression in the limb. Although we find that Sonic hedgehog is capable of initiating and polarizing Hoxd gene expression during both of the latter two phases of Hox gene expression, the specific patterns induced are not determined by the signal, but depend upon the temporal context of the mesoderm receiving the signal. Misexpression of Sonic hedgehog also reveals that Hoxb-9, which is normally excluded from the posterior mesenchyme of the leg, is negatively regulated by Sonic hedgehog and that Hoxc-11, which is expressed in the posterior portion of the leg, is not affected by Sonic hedgehog and hence is not required to pattern the skeletal elements of the lower leg.


Assuntos
Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Transativadores , Sequência de Aminoácidos , Animais , Sequência de Bases , Movimento Celular , Embrião de Galinha , Biblioteca Gênica , Proteínas Hedgehog , Imuno-Histoquímica , Hibridização In Situ , Modelos Genéticos , Dados de Sequência Molecular , Morfogênese , Músculos/citologia , Músculos/embriologia , Reação em Cadeia da Polimerase , Proteínas/metabolismo , Fatores de Tempo , Distribuição Tecidual , Transcrição Gênica
6.
EMBO J ; 14(23): 5965-73, 1995 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-8846789

RESUMO

The activin/transforming growth factor-beta (TGF-beta) family of peptide growth factors plays a central role in the induction of mesoderm during early Xenopus embryogenesis. Immediate transcriptional responses to mesoderm-inducing signals have been described, but the signal transduction steps leading to these early responses are unknown. We describe here the first pre-transcriptional response to activin/TGF-beta mesoderm inducers in the early embryo. We have identified a cellular factor which binds to a 50 bp portion of the promoter for an activin/TGF-beta early response gene. This factor is activated within 4 min of treatment of embryonic prospective ectoderm with mesoderm-inducing factors, making it the earliest response to these factors described in early embryos. This factor can be activated throughout early cleavage and blastula stages, is activated by mesoderm inducers of the activin/TGF-beta superfamily but not the fibroblast growth factor (FGF) family, and does not appear to require an endogenous FGF signal for activation. Characterization of this factor provides a powerful tool for studying the early steps in the induction of mesoderm by members of the activin/TGF-beta superfamily.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Inibinas/metabolismo , Mesoderma/metabolismo , Transcrição Gênica/genética , Fator de Crescimento Transformador beta/metabolismo , Ativinas , Animais , Sequência de Bases , Blastocisto/metabolismo , Proteínas de Ligação a DNA/genética , Substâncias de Crescimento/metabolismo , Inibinas/farmacologia , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Xenopus/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA