Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 227(1)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38467475

RESUMO

Asymmetric transport of cargo across axonal branches is a field of active research. Mechanisms contributing to preferential cargo transport along specific branches in vivo in wild type neurons are poorly understood. We find that anterograde synaptic vesicles preferentially enter the synaptic branch or pause at the branch point in Caenorhabditis elegans Posterior Lateral Mechanosensory neurons. The synaptic vesicle anterograde kinesin motor UNC-104/KIF1A regulates this vesicle behavior at the branch point. Reduced levels of functional UNC-104 cause vesicles to predominantly pause at the branch point and lose their preference for turning into the synaptic branch. SAM-4/Myrlysin, which aids in recruitment/activation of UNC-104 on synaptic vesicles, regulates vesicle behavior at the branch point similar to UNC-104. Increasing the levels of UNC-104 increases the preference of vesicles to go straight toward the asynaptic end. This suggests that the neuron optimizes UNC-104 levels on the cargo surface to maximize the fraction of vesicles entering the branch and minimize the fraction going to the asynaptic end.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cinesinas , Proteínas do Tecido Nervoso , Vesículas Sinápticas , Animais , Vesículas Sinápticas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Cinesinas/metabolismo , Cinesinas/genética , Neurônios/metabolismo
2.
J Cell Sci ; 136(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37194499

RESUMO

Stationary clusters of vesicles are a prominent feature of axonal transport, but little is known about their physiological and functional relevance to axonal transport. Here, we investigated the role of vesicle motility characteristics in modulating the formation and lifetimes of such stationary clusters, and their effect on cargo flow. We developed a simulation model describing key features of axonal cargo transport, benchmarking the model against experiments in the posterior lateral mechanosensory neurons of Caenorhabditis elegans. Our simulations included multiple microtubule tracks and varied cargo motion states, and account for dynamic cargo-cargo interactions. Our model also incorporates static obstacles to vesicle transport in the form of microtubule ends, stalled vesicles and stationary mitochondria. We demonstrate, both in simulations and in an experimental system, that a reduction in reversal rates is associated with a higher proportion of long-lived stationary vesicle clusters and reduced net anterograde transport. Our simulations support the view that stationary clusters function as dynamic reservoirs of cargo vesicles, and reversals aid cargo in navigating obstacles and regulate cargo transport by modulating the proportion of stationary vesicle clusters along the neuronal process.


Assuntos
Neurônios , Vesículas Sinápticas , Animais , Vesículas Sinápticas/metabolismo , Neurônios/fisiologia , Transporte Axonal/fisiologia , Fagocitose , Organelas , Caenorhabditis elegans , Vesículas Transportadoras/metabolismo
3.
Dis Model Mech ; 12(11)2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31636082

RESUMO

Phosphomannomutase 2 deficiency, or PMM2-CDG, is the most common congenital disorder of glycosylation and affects over 1000 patients globally. There are no approved drugs that treat the symptoms or root cause of PMM2-CDG. To identify clinically actionable compounds that boost human PMM2 enzyme function, we performed a multispecies drug repurposing screen using a novel worm model of PMM2-CDG, followed by PMM2 enzyme functional studies in PMM2-CDG patient fibroblasts. Drug repurposing candidates from this study, and drug repurposing candidates from a previously published study using yeast models of PMM2-CDG, were tested for their effect on human PMM2 enzyme activity in PMM2-CDG fibroblasts. Of the 20 repurposing candidates discovered in the worm-based phenotypic screen, 12 were plant-based polyphenols. Insights from structure-activity relationships revealed epalrestat, the only antidiabetic aldose reductase inhibitor approved for use in humans, as a first-in-class PMM2 enzyme activator. Epalrestat increased PMM2 enzymatic activity in four PMM2-CDG patient fibroblast lines with genotypes R141H/F119L, R141H/E139K, R141H/N216I and R141H/F183S. PMM2 enzyme activity gains ranged from 30% to 400% over baseline, depending on genotype. Pharmacological inhibition of aldose reductase by epalrestat may shunt glucose from the polyol pathway to glucose-1,6-bisphosphate, which is an endogenous stabilizer and coactivator of PMM2 homodimerization. Epalrestat is a safe, oral and brain penetrant drug that was approved 27 years ago in Japan to treat diabetic neuropathy in geriatric populations. We demonstrate that epalrestat is the first small molecule activator of PMM2 enzyme activity with the potential to treat peripheral neuropathy and correct the underlying enzyme deficiency in a majority of pediatric and adult PMM2-CDG patients.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Reposicionamento de Medicamentos , Fosfotransferases (Fosfomutases)/deficiência , Rodanina/análogos & derivados , Tiazolidinas/uso terapêutico , Animais , Células Cultivadas , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Fibroblastos/efeitos dos fármacos , Glicosilação , Humanos , Nematoides , Fosfotransferases (Fosfomutases)/genética , Polifenóis/farmacologia , Rodanina/uso terapêutico
4.
Traffic ; 19(3): 166-181, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29178177

RESUMO

Steady axonal cargo flow is central to the functioning of healthy neurons. However, a substantial fraction of cargo in axons remains stationary up to several minutes. We examine the transport of precursors of synaptic vesicles (pre-SVs), endosomes and mitochondria in Caenorhabditis elegans touch receptor neurons, showing that stationary cargo are predominantly present at actin-rich regions along the neuronal process. Stationary vesicles at actin-rich regions increase the propensity of moving vesicles to stall at the same location, resulting in traffic jams arising from physical crowding. Such local traffic jams at actin-rich regions are likely to be a general feature of axonal transport since they also occur in Drosophila neurons. Repeated touch stimulation of C. elegans reduces the density of stationary pre-SVs, indicating that these traffic jams can act as both sources and sinks of vesicles. This suggests that vesicles trapped in actin-rich regions are functional reservoirs that may contribute to maintaining robust cargo flow in the neuron. A video abstract of this article can be found at: Video S1; Video S2.


Assuntos
Transporte Axonal , Actinas/metabolismo , Animais , Caenorhabditis elegans , Drosophila , Endossomos/metabolismo , Mitocôndrias/metabolismo , Vesículas Sinápticas/metabolismo
5.
Traffic ; 12(1): 89-101, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21029289

RESUMO

Axonal transport is an essential process that carries cargoes in the anterograde direction to the synapse and in the retrograde direction back to the cell body. We have developed a novel in vivo method to exclusively mark and dynamically track retrogradely moving compartments carrying specific endogenous synaptic vesicle proteins in the Caenorhabditis elegans model. Our method is based on the uptake of a fluorescently labeled anti-green fluorescent protein (GFP) antibody delivered in an animal expressing the synaptic vesicle protein synaptobrevin-1::GFP in neurons. We show that this method largely labels retrogradely moving compartments. Very little labeling is observed upon blocking vesicle exocytosis or if the synapse is physically separated from the cell body. The extent of labeling is also dependent on the dyenin-dynactin complex. These data support the interpretation that the labeling of synaptobrevin-1::GFP largely occurs after vesicle fusion and the major labeling likely takes place at the synapse. Further, we observe that the retrograde compartment carrying synaptobrevin contains synaptotagmin but lacks the endosomal marker RAB-5. This labeling method is very general and can be readily adapted to any transmembrane protein on synaptic vesicles with a GFP tag inside the vesicle and can also be extended to other model systems.


Assuntos
Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Imagem Molecular , Neurônios/química , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Proteínas de Fluorescência Verde/química , Proteínas R-SNARE/química
6.
J Cell Sci ; 121(Pt 14): 2350-9, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18559890

RESUMO

Microtubules stimulate contractile-ring formation in the equatorial cortex and simultaneously suppress contractility in the polar cortex; how they accomplish these differing activities is incompletely understood. We measured the behavior of GFP-actin in mammalian cells treated with nocodazole under conditions that either completely eliminate microtubules or selectively disassemble astral microtubules. Selective disassembly of astral microtubules resulted in functional contractile rings that were wider than controls and had altered dynamic activity, as measured by FRAP. Complete microtubule disassembly or selective loss of astral microtubules resulted in wave-like contractile behavior of actin in the non-equatorial cortex, and mislocalization of myosin II and Rho. FRAP experiments showed that both contractility and actin polymerization contributed to the wave-like behavior of actin. Wave-like contractile behavior in anaphase cells was Rho-dependent. We conclude that dynamic astral microtubules function to suppress Rho activation in the non-equatorial cortex, limiting the contractile activity of the polar cortex.


Assuntos
Citocinese , Microtúbulos/metabolismo , Actinas/metabolismo , Anáfase/efeitos dos fármacos , Animais , Linhagem Celular , Citocinese/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microtúbulos/efeitos dos fármacos , Modelos Biológicos , Nocodazol/farmacologia , Transporte Proteico/efeitos dos fármacos , Suínos , Proteína rhoA de Ligação ao GTP/metabolismo
7.
J Cell Sci ; 118(Pt 18): 4113-22, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16118246

RESUMO

Mammalian cells develop a polarized morphology and migrate directionally into a wound in a monolayer culture. To understand how microtubules contribute to these processes, we used GFP-tubulin to measure dynamic instability and GFP-EB1, a protein that marks microtubule plus-ends, to measure microtubule growth events at the centrosome and cell periphery. Growth events at the centrosome, or nucleation, do not show directional bias, but are equivalent toward and away from the wound. Cells with two centrosomes nucleated approximately twice as many microtubules/minute as cells with one centrosome. The average number of growing microtubules per microm2 at the cell periphery is similar for leading and trailing edges and for cells containing one or two centrosomes. In contrast to microtubule growth, measurement of the parameters of microtubule dynamic instability demonstrate that microtubules in the trailing edge are more dynamic than those in the leading edge. Inhibition of Rho with C3 transferase had no detectable effect on microtubule dynamics in the leading edge, but stimulated microtubule turnover in the trailing edge. Our data demonstrate that in wound-edge cells, microtubule nucleation is non-polarized, in contrast to microtubule dynamic instability, which is highly polarized, and that factors in addition to Rho contribute to microtubule stabilization.


Assuntos
Microtúbulos/fisiologia , Cicatrização/fisiologia , Animais , Células CHO , Processos de Crescimento Celular/fisiologia , Polaridade Celular , Células Cultivadas , Centrossomo/fisiologia , Centrossomo/ultraestrutura , Cricetinae , Citoesqueleto/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Suínos , Transfecção , Tubulina (Proteína)/metabolismo
8.
Curr Biol ; 15(8): 724-31, 2005 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-15854904

RESUMO

BACKGROUND: The assembly of an F-actin- and myosin-II-containing contractile ring (CR) is required for cytokinesis in eukaryotic cells. Interactions between myosin II and actin in the ring are believed to generate the force that constricts the cell into two daughters. The mechanism(s) that contribute to the spatially and temporally regulated assembly and disassembly of the CR at the cell equator are poorly understood. RESULTS: We generated an LLCPK1 epithelial cell line that stably expresses GFP-actin. Live confocal imaging showed accumulation of GFP-actin in the equatorial cortex from late anaphase through cytokinesis. Fluorescence recovery after photobleaching (FRAP) experiments showed that actin in the CR is highly dynamic (t(1/2) = 26 s). In some cells, movement of GFP-actin toward the equatorial region was observed and contributed to FRAP. Blocking actin dynamic turnover with jasplakinolide demonstrates that dynamic actin is required for CR formation and cytokinesis. To test the role of myosin II in actin turnover and transport during CR formation, we inhibited myosin light-chain kinase with ML7 and myosin II ATPase activity with blebbistatin. Inhibition of myosin light-chain phosphorylation resulted in clearance of GFP-actin from the equatorial region, a reduction in myosin II in the furrow, and inhibition of cytokinesis. Treatment with blebbistatin did not block CR formation but reduced FRAP of GFP-actin and prevented completion of cytokinesis. CONCLUSIONS: These results demonstrate that the majority of actin in the CR is highly dynamic and establish novel roles for myosin II in the retention and dynamic turnover of actin in the CR.


Assuntos
Actinas/metabolismo , Citocinese/fisiologia , Miosina Tipo II/metabolismo , Animais , Azepinas/farmacologia , Citocinese/efeitos dos fármacos , Depsipeptídeos/farmacologia , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Células LLC-PK1 , Microscopia de Fluorescência , Naftalenos/farmacologia , Fosforilação/efeitos dos fármacos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...