Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(23): e2316206121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38805271

RESUMO

Rapid progress in algal biotechnology has triggered a growing interest in hydrogel-encapsulated microalgal cultivation, especially for the engineering of functional photosynthetic materials and biomass production. An overlooked characteristic of gel-encapsulated cultures is the emergence of cell aggregates, which are the result of the mechanical confinement of the cells. Such aggregates have a dramatic effect on the light management of gel-encapsulated photobioreactors and hence strongly affect the photosynthetic outcome. To evaluate such an effect, we experimentally studied the optical response of hydrogels containing algal aggregates and developed optical simulations to study the resultant light intensity profiles. The simulations are validated experimentally via transmittance measurements using an integrating sphere and aggregate volume analysis with confocal microscopy. Specifically, the heterogeneous distribution of cell aggregates in a hydrogel matrix can increase light penetration while alleviating photoinhibition more effectively than in a flat biofilm. Finally, we demonstrate that light harvesting efficiency can be further enhanced with the introduction of scattering particles within the hydrogel matrix, leading to a fourfold increase in biomass growth. Our study, therefore, highlights a strategy for the design of spatially efficient photosynthetic living materials that have important implications for the engineering of future algal cultivation systems.


Assuntos
Hidrogéis , Luz , Microalgas , Fotossíntese , Hidrogéis/química , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Biomassa , Fotobiorreatores
2.
Proc Biol Sci ; 290(2007): 20230127, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752841

RESUMO

The jellyfish Cassiopea largely cover their carbon demand via photosynthates produced by microalgal endosymbionts, but how holobiont morphology and tissue optical properties affect the light microclimate and symbiont photosynthesis in Cassiopea remain unexplored. Here, we use optical coherence tomography (OCT) to study the morphology of Cassiopea medusae at high spatial resolution. We include detailed 3D reconstructions of external micromorphology, and show the spatial distribution of endosymbionts and white granules in the bell tissue. Furthermore, we use OCT data to extract inherent optical properties from light-scattering white granules in Cassiopea, and show that granules enhance local light-availability for symbionts in close proximity. Individual granules had a scattering coefficient of µs = 200-300 cm-1, and scattering anisotropy factor of g = 0.7, while large tissue-regions filled with white granules had a lower µs = 40-100 cm-1, and g = 0.8-0.9. We combined OCT information with isotopic labelling experiments to investigate the effect of enhanced light-availability in whitish tissue regions. Endosymbionts located in whitish tissue exhibited significantly higher carbon fixation compared to symbionts in anastomosing tissue (i.e. tissue without light-scattering white granules). Our findings support previous suggestions that white granules in Cassiopea play an important role in the host modulation of the light-microenvironment.


Assuntos
Cnidários , Cifozoários , Animais , Tomografia de Coerência Óptica , Luz , Carbono
3.
Biotechnol Adv ; 58: 107930, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35257786

RESUMO

3D bioprinting - the fabrication of geometrically complex 3D structures from biocompatible materials containing living cells using additive manufacturing technologies - is a rapidly developing research field with a broad range of potential applications in fundamental research, regenerative medicine and industry. Currently, research into 3D bioprinting is mostly focused on new therapeutic concepts for the treatment of injured or degenerative tissue by fabrication of functional tissue equivalents or disease models, utilizing mammalian cells. However, 3D bioprinting also has an enormous potential in biotechnology. Due to the defined spatial arrangement of biologically active (non-mammalian) cells in a biomaterial matrix, reaction compartments can be designed according to specific needs, or co-cultures of different cell types can be realized in a highly organized manner to exploit cell-cell interactions. Thus, 3D bioprinting technology can enable new biotechnological concepts, for example, by implementing perfusion systems while protecting shear sensitive cells or performing cascaded bioreactions. Here, we review the use of 3D bioprinting to manufacture defined 3D microenvironments for biotechnological applications using bacteria, fungi, microalgae, plant cells and co-cultures of different cell types. We discuss recent approaches to apply 3D bioprinting in biotechnological applications and - as it is a particular challenge - concepts for the real-time monitoring of the physiological state, growth and metabolic activity of the embedded cells in 3D bioprinted constructs. With these insights, we outline new applications of 3D bioprinting in biotechnology, engineered living materials and space research.


Assuntos
Bioimpressão , Animais , Materiais Biocompatíveis , Biotecnologia , Mamíferos , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química
4.
J R Soc Interface ; 18(182): 20210532, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34465209

RESUMO

Coral reefs are constructed by calcifying coral animals that engage in a symbiosis with dinoflagellate microalgae harboured in their tissue. The symbiosis takes place in the presence of steep and dynamic gradients of light, temperature and chemical species that are affected by the structural and optical properties of the coral and their interaction with incident irradiance and water flow. Microenvironmental analyses have enabled quantification of such gradients and bulk coral tissue and skeleton optical properties, but the multi-layered nature of corals and its implications for the optical, thermal and chemical microenvironment remains to be studied in more detail. Here, we present a multiphysics modelling approach, where three-dimensional Monte Carlo simulations of the light field in a simple coral slab morphology with multiple tissue layers were used as input for modelling the heat dissipation and photosynthetic oxygen production driven by photon absorption. By coupling photon, heat and mass transfer, the model predicts light, temperature and O2 gradients in the coral tissue and skeleton, under environmental conditions simulating, for example, tissue contraction/expansion, symbiont loss via coral bleaching or different distributions of coral host pigments. The model reveals basic structure-function mechanisms that shape the microenvironment and ecophysiology of the coral symbiosis in response to environmental change.


Assuntos
Antozoários , Dinoflagellida , Animais , Recifes de Corais , Temperatura Alta , Simbiose
5.
Nanoscale ; 9(37): 14280-14287, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28914951

RESUMO

Lab-scale plasmonic color printing using nano-structured and subsequently metallized surfaces have been demonstrated to provide vivid colors. However, upscaling these structures for large area manufacturing is extremely challenging due to the requirement of nanometer precision of metal thickness. In this study, we have investigated a plasmonic color meta-surface design that can be easily upscaled. We have demonstrated the feasibility of fabrication of these plasmonic color surfaces by a high-speed roll-to-roll method, comprising roll-to-roll extrusion coating at 10 m min-1 creating a polymer foil having 100 nm deep pits of varying sub-wavelength diameter and pitch length. Subsequently this polymer foil was metallized and coated also by high-speed roll-to-roll methods. The perceived colors have high tolerance towards the thickness of the metal layer, when this thickness exceeds the depths of the pits, which enables the robust high-speed fabrication. This finding can pave the way for plasmonic meta-surfaces to be implemented in a broader range of applications such as printing, memory, surface enhanced Raman scattering (SERS), biosensors, flexible displays, photovoltaics, security, and product branding.

6.
Appl Opt ; 55(34): 9719-9723, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27958461

RESUMO

We present a method using an ordinary color camera to characterize nanostructures from the visual color of the structures. The method provides a macroscale overview image from which micrometer-sized regions can be analyzed independently, hereby revealing long-range spatial variations of the structures. The method is tested on injection-molded polymer line gratings, and the height and filling factor are determined with confidence intervals similar to more advanced imaging scatterometry setups.

7.
ACS Macro Lett ; 5(9): 1034-1038, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35614641

RESUMO

We demonstrate the use of roll-to-roll extrusion coating (R2R-EC) for fabrication of nanopatterned polypropylene (PP) foils with strong antiwetting properties. The antiwetting nanopattern is originated from textured surfaces fabricated on silicon wafers by a single-step method of reactive ion etching with different processing gas flow rates. We provide a systematic study of the wetting properties for the fabricated surfaces and show that a controlled texture stretching effect in the R2R-EC process is instrumental to yield the superhydrophobic surfaces with water contact angles approaching 160° and droplet roll-off angles below 10°.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...