Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 4: 170074, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28556827

RESUMO

Knowing where, when, and how much rice is planted and harvested is crucial information for understanding the effects of policy, trade, and global and technological change on food security. We developed RiceAtlas, a spatial database on the seasonal distribution of the world's rice production. It consists of data on rice planting and harvesting dates by growing season and estimates of monthly production for all rice-producing countries. Sources used for planting and harvesting dates include global and regional databases, national publications, online reports, and expert knowledge. Monthly production data were estimated based on annual or seasonal production statistics, and planting and harvesting dates. RiceAtlas has 2,725 spatial units. Compared with available global crop calendars, RiceAtlas is nearly ten times more spatially detailed and has nearly seven times more spatial units, with at least two seasons of calendar data, making RiceAtlas the most comprehensive and detailed spatial database on rice calendar and production.


Assuntos
Oryza , Agricultura , Produção Agrícola , Bases de Dados Factuais
2.
Plant Cell Environ ; 38(9): 1686-98, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25142172

RESUMO

Phenotypic plasticity in overcoming heat stress-induced damage across hot tropical rice-growing regions is predominantly governed by relative humidity. Expression of transpiration cooling, an effective heat-avoiding mechanism, will diminish with the transition from fully flooded paddies to water-saving technologies, such as direct-seeded and aerobic rice cultivation, thus further aggravating stress damage. This change can potentially introduce greater sensitivity to previously unaffected developmental stages such as floral meristem (panicle) initiation and spikelet differentiation, and further intensify vulnerability at the known sensitive gametogenesis and flowering stages. More than the mean temperature rise, increased variability and a more rapid increase in nighttime temperature compared with the daytime maximum present a greater challenge. This review addresses (1) the importance of vapour pressure deficit under fully flooded paddies and increased vulnerability of rice production to heat stress or intermittent occurrence of combined heat and drought stress under emerging water-saving rice technologies; (2) the major disconnect with high night temperature response between field and controlled environments in terms of spikelet sterility; (3) highlights the most important mechanisms that affect key grain quality parameters, such as chalk formation under heat stress; and finally (4), we model and estimate heat stress-induced spikelet sterility taking South Asia as a case study.


Assuntos
Agricultura/métodos , Oryza/fisiologia , Agricultura/tendências , Sudeste Asiático , Mudança Climática , Secas , Oryza/genética , Sementes/fisiologia , Estresse Fisiológico , Temperatura , Pressão de Vapor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...