Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 159: 213794, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367317

RESUMO

Extracellular matrix hydrogels are considered one of the most suitable biomaterials for tissue regeneration due to their similarity with the extracellular microenvironment of the native tissue. Their properties are dependent on their composition, material concentration, fiber density and the fabrication approaches, among other factors. The encapsulation of immune cells in this kind of hydrogels, both in absence or presence of a pathogen, represents a promising strategy for the development of platforms that mimic healthy and infected tissues, respectively. In this work, we have encapsulated macrophages in 3D hydrogels of porcine decellularized adipose matrices (pDAMs) without and with the Candida albicans fungus, as 3D experimental models to study the macrophage immunocompetence in a closer situation to the physiological conditions and to mimic an infection scenario. Our results indicate that encapsulated macrophages preserve their functionality within these pDAM hydrogels and phagocytose live pathogens. In addition, their behavior is influenced by the hydrogel pore size, inversely related to the hydrogel concentration. Thus, larger pore size promotes the polarization of macrophages towards M2 phenotype along the time and enhances their phagocytosis capability. It is important to point out that encapsulated macrophages in absence of pathogen showed an M2 phenotype, but macrophages coencapsulated with C. albicans can switch towards an M1 inflammatory phenotype to resolve the infection, depending on the fungus quantity. The present study reveals that pDAM hydrogels preserve the macrophage plasticity, demonstrating their relevance as new models for macrophage-pathogen interaction studies that mimic an infection scenario with application in regenerative medicine research.


Assuntos
Candida albicans , Hidrogéis , Suínos , Animais , Macrófagos , Pirenos
2.
Biomater Adv ; 148: 213351, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36842343

RESUMO

Enthralling evidence of the potential of graphene-based materials for neural tissue engineering is motivating the development of scaffolds using various structures related to graphene such as graphene oxide (GO) or its reduced form. Here, we investigated a strategy based on reduced graphene oxide (rGO) combined with a decellularized extracellular matrix from adipose tissue (adECM), which is still unexplored for neural repair and regeneration. Scaffolds containing up to 50 wt% rGO relative to adECM were prepared by thermally induced phase separation assisted by carbodiimide (EDC) crosslinking. Using partially reduced GO enables fine-tuning of the structural interaction between rGO and adECM. As the concentration of rGO increased, non-covalent bonding gradually prevailed over EDC-induced covalent conjugation with the adECM. Edge-to-edge aggregation of rGO favours adECM to act as a biomolecular physical crosslinker to rGO, leading to the softening of the scaffolds. The unique biochemistry of adECM allows neural stem cells to adhere and grow. Importantly, high rGO concentrations directly control cell fate by inducing the differentiation of both NE-4C cells and embryonic neural progenitor cells into neurons. Furthermore, primary astrocyte fate is also modulated as increasing rGO boosts the expression of reactivity markers while unaltering the expression of scar-forming ones.


Assuntos
Grafite , Engenharia Tecidual , Grafite/química , Neurônios , Matriz Extracelular/química
3.
J Fungi (Basel) ; 7(5)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067785

RESUMO

Macrophages, cells effective in sensing, internalizing and killing Candida albicans, are intertwined with the extracellular matrix (ECM) through different signals, which include the release of specific cytokines. Due to the importance of these interactions, the employment of in vitro models mimicking a fungal infection scenario is essential to evaluate the ECM effects on the macrophage response. In this work, we have analyzed the effects of human and porcine decellularized adipose matrices (DAMs), obtained by either enzymatic or organic solvent treatment, on the macrophage/Candida albicans interface. The present study has allowed us to detect differences on the activation of macrophages cultured on either human- or porcine-derived DAMs, evidencing changes in the macrophage actin cytoskeleton, such as distinct F-actin-rich membrane structures to surround the pathogen. The macrophage morphological changes observed on these four DAMs are key to understand the defense capability of these cells against this fungal pathogen. This work has contributed to the knowledge of the influence that the extracellular matrix and its components can exert on macrophage metabolism, immunocompetence and capacity to respond to the microenvironment in a possible infection scenario.

4.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917732

RESUMO

The decellularized extracellular matrix (ECM) obtained from human and porcine adipose tissue (AT) is currently used to prepare regenerative medicine bio-scaffolds. However, the influence of these natural biomaterials on host immune response is not yet deeply understood. Since macrophages play a key role in the inflammation/healing processes due to their high functional plasticity between M1 and M2 phenotypes, the evaluation of their response to decellularized ECM is mandatory. It is also necessary to analyze the immunocompetence of macrophages after contact with decellularized ECM materials to assess their functional role in a possible infection scenario. In this work, we studied the effect of four decellularized adipose matrices (DAMs) obtained from human and porcine AT by enzymatic or chemical methods on macrophage phenotypes and fungal phagocytosis. First, a thorough biochemical characterization of these biomaterials by quantification of remnant DNA, lipids, and proteins was performed, thus indicating the efficiency and reliability of both methods. The proteomic analysis evidenced that some proteins are differentially preserved depending on both the AT origin and the decellularization method employed. After exposure to the four DAMs, specific markers of M1 proinflammatory and M2 anti-inflammatory macrophages were analyzed. Porcine DAMs favor the M2 phenotype, independently of the decellularization method employed. Finally, a sensitive fungal phagocytosis assay allowed us to relate the macrophage phagocytosis capability with specific proteins differentially preserved in certain DAMs. The results obtained in this study highlight the close relationship between the ECM biochemical composition and the macrophage's functional role.


Assuntos
Tecido Adiposo , Matriz Extracelular , Imunocompetência , Macrófagos/citologia , Macrófagos/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Técnicas de Cultura de Células , Matriz Extracelular/química , Coto Gástrico , Humanos , Lipídeos/química , Ativação de Macrófagos , Camundongos , Fagocitose/imunologia , Células RAW 264.7 , Suínos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...