Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 8(4): 676-685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374185

RESUMO

Habitat associations underpin species ecologies in high-diversity systems. Within tropical, shallow water coral reefs, the relationship between fishes and corals is arguably the most iconic and highly scrutinized. A strong relationship between fishes and reef-building hard corals is often assumed, a belief supported by studies that document the decline of reef fishes following coral loss. However, the extent of this relationship is often unclear, as evidenced by conflicting reports. Here we assess the strength of this ecological association by relying on literature that has surveyed both fishes and corals synchronously. We quantitatively synthesize 723 bivariate correlation coefficients (from 66 papers), published over 38 years, that relate fish metrics (abundance, biomass and species richness) with the percentage of hard coral cover. Remarkably, despite extensive variation, the pattern of association on a global scale reveals a predominantly positive, albeit weak (|r| < 0.4), correlation. Even for commonly hypothesized drivers of fish-coral associations, fish family and trophic group, associations were consistently weak. These findings question our assumptions regarding the strength and ubiquity of fish-coral associations, and caution against assuming a direct and omnipresent relationship between these two iconic animal groups.


Assuntos
Antozoários , Animais , Recifes de Corais , Ecossistema , Biomassa , Peixes
2.
Ecol Lett ; 26(8): 1348-1358, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37222494

RESUMO

The biodiversity of tropical reefs is typified by the interaction between fishes and corals. Despite the importance of this ecological association, coevolutionary patterns between these two animal groups have yet to be critically evaluated. After compiling a large dataset on the prevalence of fish-coral interactions, we found that only a minority of fish species associate strongly with live corals (~5%). Furthermore, we reveal an evolutionary decoupling between fish and coral lineage trajectories. While fish lineages expanded in the Miocene, the bulk of coral diversification occurred in the Pliocene/Pleistocene. Most importantly, we found that coral association did not drive major differences in fish diversification. These results suggest that the Miocene fish diversification is more likely related to the development of novel, wave-resistant reef structures and their associated ecological opportunities. Macroevolutionary patterns in reef fishes are thus more strongly correlated with the expansion of reefs than with the corals themselves.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Peixes/genética , Biodiversidade
3.
Integr Org Biol ; 4(1): obac011, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35505796

RESUMO

Teeth facilitate the acquisition and processing of food in most vertebrates. However, relatively little is known about the functions of the diverse tooth morphologies observed in fishes. Piscivorous fishes (fish-eating fish) are crucial in shaping community structure and rely on their oral teeth to capture and/or process prey. However, how teeth are utilized in capturing and/or processing prey remains unclear. Most studies have determined the function of teeth by assessing morphological traits. The behavior during feeding, however, is seldom quantified. Here, we describe the function of teeth within piscivorous fishes by considering how morphological and behavioral traits interact during prey capture and processing. This was achieved through aquarium-based performance experiments, where prey fish were fed to 12 species of piscivorous fishes. Building on techniques in forensic odontology, we incorporate a novel approach to quantify and categorize bite damage on prey fish that were extracted from the piscivore's stomachs immediately after being ingested. We then assess the significance of morphological and behavioral traits in determining the extent and severity of damage inflicted on prey fish. Results show that engulfing piscivores capture their prey whole and head-first. Grabbing piscivores capture prey tail-first using their teeth, process them using multiple headshakes and bites, before spitting them out, and then re-capturing prey head-first for ingestion. Prey from engulfers sustained minimal damage, whereas prey from grabbers sustained significant damage to the epaxial musculature. Within grabbers, headshakes were significantly associated with more severe damage categories. Headshaking behavior damages the locomotive muscles of prey, presumably to prevent escape. Compared to non-pharyngognaths, pharyngognath piscivores inflict significantly greater damage to prey. Overall, when present, oral jaw teeth appear to be crucial for both prey capture and processing (immobilization) in piscivorous fishes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...