Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 87: 102826, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37146441

RESUMO

Despite the undeniable progress in visual recognition tasks fueled by deep neural networks, there exists recent evidence showing that these models are poorly calibrated, resulting in over-confident predictions. The standard practices of minimizing the cross-entropy loss during training promote the predicted softmax probabilities to match the one-hot label assignments. Nevertheless, this yields a pre-softmax activation of the correct class that is significantly larger than the remaining activations, which exacerbates the miscalibration problem. Recent observations from the classification literature suggest that loss functions that embed implicit or explicit maximization of the entropy of predictions yield state-of-the-art calibration performances. Despite these findings, the impact of these losses in the relevant task of calibrating medical image segmentation networks remains unexplored. In this work, we provide a unifying constrained-optimization perspective of current state-of-the-art calibration losses. Specifically, these losses could be viewed as approximations of a linear penalty (or a Lagrangian term) imposing equality constraints on logit distances. This points to an important limitation of such underlying equality constraints, whose ensuing gradients constantly push towards a non-informative solution, which might prevent from reaching the best compromise between the discriminative performance and calibration of the model during gradient-based optimization. Following our observations, we propose a simple and flexible generalization based on inequality constraints, which imposes a controllable margin on logit distances. Comprehensive experiments on a variety of public medical image segmentation benchmarks demonstrate that our method sets novel state-of-the-art results on these tasks in terms of network calibration, whereas the discriminative performance is also improved. The code is available at https://github.com/Bala93/MarginLoss.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Calibragem , Entropia
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1327-1330, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085912

RESUMO

Preterm babies in the Neonatal Intensive Care Unit (NICU) have to undergo continuous monitoring of their cardiac health. Conventional monitoring approaches are contact-based, making the neonates prone to various nosocomial infections. Video-based monitoring approaches have opened up potential avenues for contactless measurement. This work presents a pipeline for remote estimation of cardiopulmonary signals from videos in NICU setup. We have proposed an end-to-end deep learning (DL) model that integrates a non-learning-based approach to generate surrogate ground truth (SGT) labels for supervision, thus refraining from direct dependency on true ground truth labels. We have performed an extended qualitative and quantitative analysis to examine the efficacy of our proposed DL-based pipeline and achieved an overall average mean absolute error of 4.6 beats per minute (bpm) and root mean square error of 6.2 bpm in the estimated heart rate.


Assuntos
Infecção Hospitalar , Aprendizado Profundo , Frequência Cardíaca , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Monitorização Fisiológica
3.
Comput Med Imaging Graph ; 91: 101942, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34087612

RESUMO

Deep learning networks have shown promising results in fast magnetic resonance imaging (MRI) reconstruction. In our work, we develop deep networks to further improve the quantitative and the perceptual quality of reconstruction. To begin with, we propose reconsynergynet (RSN), a network that combines the complementary benefits of independently operating on both the image and the Fourier domain. For a single-coil acquisition, we introduce deep cascade RSN (DC-RSN), a cascade of RSN blocks interleaved with data fidelity (DF) units. Secondly, we improve the structure recovery of DC-RSN for T2 weighted Imaging (T2WI) through assistance of T1 weighted imaging (T1WI), a sequence with short acquisition time. T1 assistance is provided to DC-RSN through a gradient of log feature (GOLF) fusion. Furthermore, we propose perceptual refinement network (PRN) to refine the reconstructions for better visual information fidelity (VIF), a metric highly correlated to radiologist's opinion on the image quality. Lastly, for multi-coil acquisition, we propose variable splitting RSN (VS-RSN), a deep cascade of blocks, each block containing RSN, multi-coil DF unit, and a weighted average module. We extensively validate our models DC-RSN and VS-RSN for single-coil and multi-coil acquisitions and report the state-of-the-art performance. We obtain a SSIM of 0.768, 0.923, and 0.878 for knee single-coil-4x, multi-coil-4x, and multi-coil-8x in fastMRI, respectively. We also conduct experiments to demonstrate the efficacy of GOLF based T1 assistance and PRN.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 300-303, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33017988

RESUMO

Cardiac arrhythmia is a prevalent and significant cause of morbidity and mortality among cardiac ailments. Early diagnosis is crucial in providing intervention for patients suffering from cardiac arrhythmia. Traditionally, diagnosis is performed by examination of the Electrocardiogram (ECG) by a cardiologist. This method of diagnosis is hampered by the lack of accessibility to expert cardiologists. For quite some time, signal processing methods had been used to automate arrhythmia diagnosis. However, these traditional methods require expert knowledge and are unable to model a wide range of arrhythmia. Recently, Deep Learning methods have provided solutions to performing arrhythmia diagnosis at scale. However, the black-box nature of these models prohibit clinical interpretation of cardiac arrhythmia. There is a dire need to correlate the obtained model outputs to the corresponding segments of the ECG. To this end, two methods are proposed to provide interpretability to the models. The first method is a novel application of Gradient-weighted Class Activation Map (Grad-CAM) for visualizing the saliency of the CNN model. In the second approach, saliency is derived by learning the input deletion mask for the LSTM model. The visualizations are provided on a model whose competence is established by comparisons against baselines. The results of model saliency not only provide insight into the prediction capability of the model but also aligns with the medical literature for the classification of cardiac arrhythmia.Clinical relevance- Adapts interpretability modules for deep learning networks in ECG arrhythmia classfication, allowing for better clinical interpretation.


Assuntos
Algoritmos , Arritmias Cardíacas , Arritmias Cardíacas/diagnóstico , Eletrocardiografia , Humanos , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 345-348, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33017999

RESUMO

Automatic detection of R-peaks in an Electrocardiogram signal is crucial in a multitude of applications including Heart Rate Variability (HRV) analysis and Cardio Vascular Disease(CVD) diagnosis. Although there have been numerous approaches that have successfully addressed the problem, there has been a notable dip in the performance of these existing detectors on ECG episodes that contain noise and HRV Irregulates. On the other hand, Deep Learning(DL) based methods have shown to be adept at modelling data that contain noise. In image to image translation, Unet is the fundamental block in many of the networks. In this work, a novel application of the Unet combined with Inception and Residual blocks is proposed to perform the extraction of R-peaks from an ECG. Furthermore, the problem formulation also robustly deals with issues of variability and sparsity of ECG R-peaks. The proposed network was trained on a database containing ECG episodes that have CVD and was tested against three traditional ECG detectors on a validation set. The model achieved an F1 score of 0.9837, which is a substantial improvement over the other beat detectors. Furthermore, the model was also evaluated on three other databases. The proposed network achieved high F1 scores across all datasets which established its generalizing capacity. Additionally, a thorough analysis of the model's performance in the presence of different levels of noise was carried out.


Assuntos
Aprendizado Profundo , Processamento de Sinais Assistido por Computador , Algoritmos , Eletrocardiografia , Frequência Cardíaca
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1584-1587, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018296

RESUMO

High spatial resolution of Magnetic Resonance images (MRI) provide rich structural details to facilitate accurate diagnosis and quantitative image analysis. However the long acquisition time of MRI leads to patient discomfort and possible motion artifacts in the reconstructed image. Single Image Super-Resolution (SISR) using Convolutional Neural networks (CNN) is an emerging trend in biomedical imaging especially Magnetic Resonance (MR) image analysis for image post processing. An efficient choice of SISR architecture is required to achieve better quality reconstruction. In addition, a robust choice of loss function together with the domain in which these loss functions operate play an important role in enhancing the fine structural details as well as removing the blurring effects to form a high resolution image. In this work, we propose a novel combined loss function consisting of an L1 Charbonnier loss function in the image domain and a wavelet domain loss function called the Isotropic Undecimated Wavelet loss (IUW loss) to train the existing Laplacian Pyramid Super-Resolution CNN. The proposed loss function was evaluated on three MRI datasets - privately collected Knee MRI dataset and the publicly available Kirby21 brain and iSeg infant brain datasets and on benchmark SISR datasets for natural images. Experimental analysis shows promising results with better recovery of structure and improvements in qualitative metrics.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Espectroscopia de Ressonância Magnética , Redes Neurais de Computação
7.
Med Image Anal ; 59: 101570, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31630011

RESUMO

Glaucoma is one of the leading causes of irreversible but preventable blindness in working age populations. Color fundus photography (CFP) is the most cost-effective imaging modality to screen for retinal disorders. However, its application to glaucoma has been limited to the computation of a few related biomarkers such as the vertical cup-to-disc ratio. Deep learning approaches, although widely applied for medical image analysis, have not been extensively used for glaucoma assessment due to the limited size of the available data sets. Furthermore, the lack of a standardize benchmark strategy makes difficult to compare existing methods in a uniform way. In order to overcome these issues we set up the Retinal Fundus Glaucoma Challenge, REFUGE (https://refuge.grand-challenge.org), held in conjunction with MICCAI 2018. The challenge consisted of two primary tasks, namely optic disc/cup segmentation and glaucoma classification. As part of REFUGE, we have publicly released a data set of 1200 fundus images with ground truth segmentations and clinical glaucoma labels, currently the largest existing one. We have also built an evaluation framework to ease and ensure fairness in the comparison of different models, encouraging the development of novel techniques in the field. 12 teams qualified and participated in the online challenge. This paper summarizes their methods and analyzes their corresponding results. In particular, we observed that two of the top-ranked teams outperformed two human experts in the glaucoma classification task. Furthermore, the segmentation results were in general consistent with the ground truth annotations, with complementary outcomes that can be further exploited by ensembling the results.


Assuntos
Aprendizado Profundo , Técnicas de Diagnóstico Oftalmológico , Fundo de Olho , Glaucoma/diagnóstico por imagem , Fotografação , Conjuntos de Dados como Assunto , Humanos
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5556-5559, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31947114

RESUMO

Respiratory ailments afflict a wide range of people and manifests itself through conditions like asthma and sleep apnea. Continuous monitoring of chronic respiratory ailments is seldom used outside the intensive care ward due to the large size and cost of the monitoring system. While Electrocardiogram (ECG) based respiration extraction is a validated approach, its adoption is limited by access to a suitable continuous ECG monitor. Recently, due to the widespread adoption of wearable smartwatches with in-built Photoplethysmogram (PPG) sensor, it is being considered as a viable candidate for continuous and unobtrusive respiration monitoring. Research in this domain, however, has been predominantly focussed on estimating respiration rate from PPG. In this work, a novel end-to-end deep learning network called RespNet is proposed to perform the task of extracting the respiration signal from a given input PPG as opposed to extracting respiration rate. The proposed network was trained and tested on two different datasets utilizing different modalities of reference respiration signal recordings. Also, the similarity and performance of the proposed network against two conventional signal processing approaches for extracting respiration signal were studied. The proposed method was tested on two independent datasets with a Mean Squared Error of 0.262 and 0.145. The cross-correlation coefficient of the respective datasets were found to be 0.933 and 0.931. The reported errors and similarity was found to be better than conventional approaches. The proposed approach would aid clinicians to provide comprehensive evaluation of sleep-related respiratory conditions and chronic respiratory ailments while being comfortable and inexpensive for the patient.


Assuntos
Aprendizado Profundo , Fotopletismografia , Respiração , Algoritmos , Eletrocardiografia , Frequência Cardíaca , Humanos , Processamento de Sinais Assistido por Computador
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 7223-7226, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31947500

RESUMO

Image segmentation is a primary task in many medical applications. Recently, many deep networks derived from U-Net has been extensively used in various medical image segmentation tasks. However, in most of the cases, networks similar to U-net produce coarse and non-smooth segmentations with lots of discontinuities. To improve and refine the performance of U-Net like networks, we propose the use of parallel decoders which along with performing the mask predictions also perform contour prediction and distance map estimation. The contour and distance map aid in ensuring smoothness in the segmentation predictions. To facilitate joint training of three tasks, we propose a novel architecture called Psi-Net with a single encoder and three parallel decoders (thus having a shape of Ψ), one decoder to learn the segmentation mask prediction and other two decoders to learn the auxiliary tasks of contour detection and distance map estimation. The learning of these auxiliary tasks helps in capturing the shape and the boundary information. We also propose a new joint loss function for the proposed architecture. The loss function consists of a weighted combination of Negative Log Likelihood and Mean Square Error loss. We have used two publicly available datasets: 1) Origa dataset for the task of optic cup and disc segmentation and 2) Endovis segment dataset for the task of polyp segmentation to evaluate our model. We have conducted extensive experiments using our network to show our model gives better results in terms of segmentation, boundary and shape metrics.


Assuntos
Processamento de Imagem Assistida por Computador , Disco Óptico/diagnóstico por imagem , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...