Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 26, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38246994

RESUMO

BACKGROUND: Sugar-feeding behaviour is essential for mosquito survival and reproduction, and has been exploited to develop new control strategies, such as the attractive targeted sugar baits (ATSB). This study examined the sugar-feeding habits of the dengue vector, Aedes aegypti, in semi-field conditions to determine the optimal timing (age) of sugar meals and whether the availability of sugar sources could affect blood-feeding by these mosquitoes. METHODS: A series of paired-choice assays were conducted in which mosquitoes were allowed to choose between a sugar meal or a blood meal directly from a rabbit. Female 1-day-old mosquitoes were given meal choices in cages I-V and observed for feeding choice in only one cage every day for 5 days starting with cages I to V. The preference of Ae. aegypti to feed on sugar or blood and the effect of sugar source availability on blood-feeding was assessed at different chronological and physiological ages. RESULTS: In the first 5 days post-emergence, there was no significant difference in mosquito preference for sugar or blood meals. However, after the first gonotrophic cycle, they had a greater preference for blood over sugar (odds ratio, OR [95% confidence interval, CI] = 9.4 [6.7-13.0]; P < 0.001). Nulliparous Ae. aegypti females (≤ 5-day-old mosquitoes) were less likely to blood-feed if both sugar and blood sources were concurrently available (OR = 0.06 [0.02-0.16]; P < 0.001). CONCLUSIONS: Newly emerged females of Ae. aegypti mosquitoes were equally likely to choose a sugar meal or a blood meal. However, after the first gonotrophic cycle, they had a greater preference for blood over sugar. Additionally, nulliparous female mosquitoes were less likely to blood-feed when both sugar and blood sources were available. These findings provide insights into the sugar-feeding behaviour of Ae. aegypti and can inform the development and optimization of new control strategies such as using ATSB.


Assuntos
Aedes , Dengue , Feminino , Animais , Açúcares , Mosquitos Vetores , Bioensaio , Dengue/prevenção & controle
2.
Wellcome Open Res ; 7: 4, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37409221

RESUMO

Background The control of vector borne arboviral diseases such as Dengue is mainly achieved by reducing human-vector contact and controlling the vectors through source reduction and environmental management. These measures are constrained by labour intensity, insecticide resistance and pro-active community participation. The current study intended to develop and test an ivermectin-based attractive-targeted sugar bait (ATSB) against Aedes aegypti. Methods The 48hour lethal concentration (LC90) of ivermectin against Ae. aegypti was determined through serial dilution experiment where five 30cm x 30cm x 30cm cages were set; into each, a 10% sugar solution treated with ivermectin were introduced. 40 Ae. aegypti were released into each cage and observed for mortality after 4, 8, 24 and 48 hours. The ivermectin-based ATSB was evaluated in a semi field system where ATSB and attractive sugar bait (ASB) were deployed into each compartment of the semi field and 100 female Ae. aegypti were released every day and recaptured the next day through human land catch and Bio-gent sentinel trap. The developed and semi-field tested ATSB was further tested in the field by deploying them in garages. Results The ivermectin 48hr LC90 of male and female Ae. aegypti was found to be 0.03% w/v. In the semi field system, the ATSB significantly reduced a free-flying population of Ae. aegypti within 24 hours (incidence rate ratio (IRR) = 0.62; [95% confidence interval (95%CI); 0.54-0.70] and p-value < 0.001). However, in the field, the ATSBs required the addition of yeast as a carbon dioxide source to efficiently attract Ae. aegypti mosquitoes to feed. Conclusion Ivermectin is an active ingredient that can be used in an ATSB for Ae. aegypti depopulation. However, further research is needed to improve the developed and tested ATSB to compete with natural sources of sugar in a natural environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...