Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(40): 9042-9051, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37782281

RESUMO

Halide perovskites and elpasolites are key for optoelectronic applications due to their exceptional performance and adaptability. However, understanding their crucial elastic properties for synthesis and device operation remains limited. We performed temperature- and pressure-dependent synchrotron-based powder X-ray diffraction at low pressures (ambient to 0.06 GPa) to investigate their elastic properties in their ambient-pressure crystal structure. We found common trends in bulk modulus and thermal expansivity, with an increased halide ionic radius (Cl to Br to I) resulting in greater softness, higher compressibility, and thermal expansivity in both materials. The A cation has a minor effect, and mixed-halide compositions show intermediate properties. Notably, thermal phase transitions in MAPbI3 and CsPbCl3 induced lattice softening and negative expansivity for specific crystal axes, even at temperatures far from the transition point. These results emphasize the significance of considering temperature-dependent elastic properties, which can significantly impact device stability and performance during manufacturing or temperature sweeps.

2.
ACS Appl Mater Interfaces ; 14(33): 38067-38076, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35943781

RESUMO

Lead-halide perovskites offer excellent properties for lighting and display applications. Nanopatterning perovskite films could enable perovskite-based devices with designer properties, increasing their performance and adding novel functionalities. We demonstrate the potential of nanopatterning for achieving light emission of a perovskite film into a specific angular range by introducing periodic sol-gel structures between the injection and emissive layer by using substrate conformal imprint lithography (SCIL). Structural and optical characterization reveals that the emission is funnelled into a well-defined angular range by optical resonances, while the emission wavelength and the structural properties of the perovskite film are preserved. The results demonstrate a flexible and scalable approach to the patterning of perovskite layers, paving the way toward perovskite LEDs with designer angular emission patterns.

3.
ACS Energy Lett ; 7(6): 2128-2135, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35719270

RESUMO

Halide double perovskites, A2MIMIIIX6, offer a vast chemical space for obtaining unexplored materials with exciting properties for a wide range of applications. The photovoltaic performance of halide double perovskites has been limited due to the large and/or indirect bandgap of the presently known materials. However, their applications extend beyond outdoor photovoltaics, as halide double perovskites exhibit properties suitable for memory devices, indoor photovoltaics, X-ray detectors, light-emitting diodes, temperature and humidity sensors, photocatalysts, and many more. This Perspective highlights challenges associated with the synthesis and characterization of halide double perovskites and offers an outlook on the potential use of some of the properties exhibited by this so far underexplored class of materials.

4.
Adv Mater ; 34(17): e2108720, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35181967

RESUMO

Layered Dion-Jacobson (DJ) and Ruddlesden-Popper (RP) hybrid perovskites are promising materials for optoelectronic applications due to their modular structure. To fully exploit their functionality, mechanical stimuli can be used to control their properties without changing the composition. However, the responsiveness of these systems to pressure compatible with practical applications (<1 GPa) remains unexploited. Hydrostatic pressure is used to investigate the structure-property relationships in representative iodide and bromide DJ and RP 2D perovskites based on 1,4-phenylenedimethylammonium (PDMA) and benzylammonium (BzA) spacers in the 0-0.35 GPa pressure range. Pressure-dependent X-ray scattering measurements reveal that lattices of these compositions monotonically shrink and density functional theory calculations provide insights into the structural changes within the organic spacer layer. These structural changes affect the optical properties; the most significant shift in the optical absorption is observed in (BzA)2 PbBr4 under 0.35 GPa pressure, which is attributed to an isostructural phase transition. Surprisingly, the RP and DJ perovskites behave similarly under pressure, despite the different binding modes of the spacer molecules. This study provides important insights into how the manipulation of the crystal structure affects the optoelectronic properties of such materials, whereas the reversibility of their response expands the perspectives for future applications.

5.
Adv Mater ; 33(20): e2005291, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33843089

RESUMO

Patterning materials with different properties in a single film is a fundamental challenge and essential for the development of next-generation (opto)electronic functional components. This work introduces the concept of ion exchange lithography and demonstrates spatially controlled patterning of electrically insulating films and semiconductors with tunable optoelectronic properties. In ion exchange lithography, a reactive nanoparticle "canvas" is locally converted by printing ion exchange "inks." To demonstrate the proof of principle, a canvas of insulating nanoporous lead carbonate is spatioselectively converted into semiconducting lead halide perovskites by contact printing an ion exchange precursor ink of methylammonium and formamidinium halides. By selecting the composition of the ink, the photoluminescence wavelength of the perovskite semiconductors is tunable over the entire visible spectrum. A broad palette of conversion inks can be applied on the reactive film by printing with customizable stamp designs, spray-painting with stencils, and painting with a brush to inscribe well-defined patterns with tunable optoelectronic properties in the same canvas. Moreover, the optoelectronic properties of the converted canvas are exploited to fabricate a green light-emitting diode (LED), demonstrating the functionality potential of ion exchange lithography.

6.
J Phys Chem Lett ; 12(17): 4118-4124, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33891428

RESUMO

Hot-carrier cooling (HCC) in metal halide perovskites above the Mott transition is significantly slower than in conventional semiconductors. This effect is commonly attributed to a hot-phonon bottleneck, but the influence of the lattice properties on the HCC behavior is poorly understood. Using pressure-dependent transient absorption spectroscopy, we find that at an excitation density below the Mott transition, pressure does not affect the HCC. On the contrary, above the Mott transition, HCC in methylammonium lead iodide is around 2-3 times faster at 0.3 GPa than at ambient pressure. Our electron-phonon coupling calculations reveal ∼2-fold stronger electron-phonon coupling for the inorganic cage mode at 0.3 GPa. However, our experiments reveal that pressure promotes faster HCC only above the Mott transition. Altogether, these findings suggest a change in the nature of excited carriers above the Mott transition threshold, providing insights into the electronic behavior of devices operating at such high charge-carrier densities.

7.
J Phys Chem Lett ; 12(9): 2423-2428, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33661008

RESUMO

Ion migration in perovskite layers can significantly reduce the long-term stability of the devices. While perovskite composition engineering has proven an interesting tool to mitigate ion migration, many optoelectronic devices require a specific bandgap and thus require a specific perovskite composition. Here, we look at the effect of grain size to mitigate ion migration. We find that in MAPbBr3 solar cells prepared with grain sizes varying from 2 to 11 µm the activation energy for bromide ion migration increases from 0.17 to 0.28 eV. Moreover, we observe the appearance of a second bromide ion migration pathway for the devices with largest grain size, which we attribute to ion migration mediated by the bulk of the perovskite, as opposed to ion migration mediated by the grain boundaries. Together, these results suggest the beneficial nature of grain engineering for reduction of ion migration in perovskite solar cells.

8.
ACS Appl Mater Interfaces ; 13(5): 6854-6863, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33513304

RESUMO

Understanding and controlling the crystallization of organic-inorganic perovskite materials is important for their function in optoelectronic applications. This control is particularly delicate in scalable single-step thermal annealing methods. In this work, the crystallization mechanisms of flash infrared-annealed perovskite films, grown on substrates with lithographically patterned Au nucleation seeds, are investigated. The patterning enables the in situ observation to study the crystallization kinetics and the precise control of the perovskite nucleation and domain growth, while retaining the characteristic polycrystalline micromorphology with larger crystallites at the boundaries of the crystal domains, as shown by electron backscattering diffraction. Time-resolved photoluminescence measurements reveal longer charge carrier lifetimes in regions with large crystallites on the domain boundaries, relative to the domain interior. By increasing the nucleation site density, the proportion of larger crystallites is increased. This study shows that the combination of rapid thermal annealing with nucleation control is a promising approach to improve perovskite crystallinity and thereby ultimately the performance of optoelectronic devices.

9.
ACS Appl Energy Mater ; 4(12): 13431-13437, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34977472

RESUMO

Halide alloying in metal halide perovskites is a useful tool for optoelectronic applications requiring a specific bandgap. However, mixed-halide perovskites show ion migration in the perovskite layer, leading to phase segregation and reducing the long-term stability of the devices. Here, we study the ion migration process in methylammonium-based mixed-halide perovskites with varying ratios of bromide to iodide. We find that the mixed-halide perovskites show two separate halide migration processes, in contrast to pure-phase perovskites, which show only a unique halide migration component. Compared to pure-halide perovskites, these processes have lower activation energies, facilitating ion migration in mixed versus pure-phase perovskites, and have a higher density of mobile ions. Under illumination, we find that the concentration of mobile halide ions is further increased and notice the emergence of a migration process involving methylammonium cations. Quantifying the ion migration processes in mixed-halide perovskites shines light on the key parameters allowing the design of bandgap-tunable perovskite solar cells with long-term stability.

10.
ACS Energy Lett ; 5(10): 3152-3158, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33072865

RESUMO

The bandgap tunability of mixed-halide perovskites makes them promising candidates for light-emitting diodes and tandem solar cells. However, illuminating mixed-halide perovskites results in the formation of segregated phases enriched in a single halide. This segregation occurs through ion migration, which is also observed in single-halide compositions, and whose control is thus essential to enhance the lifetime and stability. Using pressure-dependent transient absorption spectroscopy, we find that the formation rates of both iodide- and bromide-rich phases in MAPb(Br x I1-x )3 reduce by 2 orders of magnitude on increasing the pressure to 0.3 GPa. We explain this reduction from a compression-induced increase of the activation energy for halide migration, which is supported by first-principle calculations. A similar mechanism occurs when the unit cell volume is reduced by incorporating a smaller cation. These findings reveal that stability with respect to halide segregation can be achieved either physically through compressive stress or chemically through compositional engineering.

11.
J Phys Chem Lett ; 11(17): 7127-7132, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32787314

RESUMO

Solar cells based on metal halide perovskites often show excellent efficiency but poor stability. This degradation of perovskite devices has been associated with the migration of mobile ions. MAPbBr3 perovskite materials are significantly more stable under ambient conditions than MAPbI3 perovskite materials. In this work, we use transient ion drift to quantify the key characteristics of ion migration in MAPbBr3 perovskite solar cells. We then proceed to compare them with those of MAPbI3 perovskite solar cells. We find that in MAPbBr3, bromide migration is the main process at play and that contrary to the case of MAPbI3, there is no evidence for methylammonium migration. Quantitatively, we find a reduced activation energy, a reduced diffusion coefficient, and a reduced concentration for halide ions in MAPbBr3 compared to MAPbI3. Understanding this difference in mobile ion migration is a crucial step in understanding the enhanced stability of MAPbBr3 versus MAPbI3.

12.
J Phys Chem Lett ; 10(20): 6010-6018, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31542932

RESUMO

Growing large, oriented grains of perovskite often leads to efficient devices, but it is unclear if properties of the grains are responsible for the efficiency. Domains observed in SEM are commonly misidentified with crystallographic grains, but SEM images do not provide diffraction information. We study methylammoinium lead iodide (MAPbI3) films fabricated via flash infrared annealing (FIRA) and the conventional antisolvent (AS) method by measuring grain size and orientation using electron back-scattered diffraction (EBSD) and studying how these affect optoelectronic properties such as local photoluminescence (PL), charge carrier lifetimes, and mobilities. We observe a local enhancement and shift of the PL emission at different regions of the FIRA clusters, but we observe no effect of crystal orientation on the optoelectronic properties. Additionally, despite substantial differences in grain size between the two systems, we find similar optoelectronic properties. These findings show that optoelectronic quality is not necessarily related to the orientation and size of crystalline domains.

13.
ACS Appl Mater Interfaces ; 11(19): 17555-17562, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30990007

RESUMO

We present a one-step method to produce air-stable, large-grain mixed cationic lead perovskite films and powders under ambient conditions. The introduction of 2.5 % of Zn(II), confirmed by X-ray diffraction (XRD), results in stable thin films which show the same absorption and crystal structure after 2 weeks of storage under ambient conditions. Next to prolonged stability, the introduction of Zn(II) affects photophysical properties, reducing the bulk defect density, enhancing the photoluminescence (PL), and extending the charge carrier lifetime. Furthermore, 3-chloropropylamine hydrochloride is applied as the film-forming agent. The presence of this amine hydrochloride additive results in highly oriented and large crystal domains showing an ulterior improvement of PL intensity and lifetime. The material can also be prepared as black precursor powder by a solid-solid reaction under ambient conditions and can be pressed into a perovskite pellet. The prolonged stability and the easy fabrication in air makes this material suitable for large-scale, low-cost processing for optoelectronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...