Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0306722, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985706

RESUMO

Host microbial communities (hereafter, the 'microbiome') are recognized as an important aspect of host health and are gaining attention as a useful biomarker to understand the ecology and demographics of wildlife populations. Several studies indicate that the microbiome may contribute to the adaptive capacity of animals to changing environments associated with increasing habitat fragmentation and rapid climate change. To this end, we investigated the gut microbiome of pronghorn (Antilocapra americana), an iconic species in an environment that is undergoing both climatic and anthropogenic change. The bacterial composition of the pronghorn gut microbiome has yet to be described in the literature, and thus our study provides important baseline information about this species. We used 16S rRNA amplicon sequencing of fecal samples to characterize the gut microbiome of pronghorn-a facultative sagebrush (Artemisia spp.) specialist in many regions where they occur in western North America. We collected fecal pellets from 159 captured female pronghorn from four herds in the Red Desert of Wyoming during winters of 2013 and 2014. We found small, but significant differences in diversity of the gut microbiome relative to study area, capture period, and body fat measurements. In addition, we found a difference in gut microbiome composition in pronghorn across two regions separated by Interstate 80. Results indicated that the fecal microbiome may be a potential biomarker for the spatial ecology of free-ranging ungulates. The core gut microbiome of these animals-including bacteria in the phyla Firmicutes (now Bacillota) and Bacteroidota-remained relatively stable across populations and biological metrics. These findings provide a baseline for the gut microbiome of pronghorn that could potentially be used as a target in monitoring health and population structure of pronghorn relative to habitat fragmentation, climate change, and management practices.


Assuntos
Fezes , Microbioma Gastrointestinal , RNA Ribossômico 16S , Animais , Microbioma Gastrointestinal/genética , Wyoming , RNA Ribossômico 16S/genética , Feminino , Fezes/microbiologia , Clima Desértico , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Ecossistema
2.
Environ Microbiome ; 17(1): 61, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572917

RESUMO

BACKGROUND: Plants are found in a large percentage of indoor environments, yet the potential for bacteria associated with indoor plant leaves and soil to colonize human skin remains unclear. We report results of experiments in a controlled climate chamber to characterize bacterial communities inhabiting the substrates and leaves of five indoor plant species, and quantify microbial transfer dynamics and residence times on human skin following simulated touch contact events. Controlled bacterial propagule transfer events with soil and leaf donors were applied to the arms of human occupants and repeatedly measured over a 24-h period using 16S rRNA gene amplicon sequencing. RESULTS: Substrate samples had greater biomass and alpha diversity compared to leaves and baseline skin bacterial communities, as well as dissimilar taxonomic compositions. Despite these differences in donor community diversity and biomass, we observed repeatable patterns in the dynamics of transfer events. Recipient human skin bacterial communities increased in alpha diversity and became more similar to donor communities, an effect which, for soil contact only, persisted for at least 24 h. Washing with soap and water effectively returned communities to their pre-perturbed state, although some abundant soil taxa resisted removal through washing. CONCLUSIONS: This study represents an initial characterization of bacterial relationships between humans and indoor plants, which represent a potentially valuable element of biodiversity in the built environment. Although environmental microbiota are unlikely to permanently colonize skin following a single contact event, repeated or continuous exposures to indoor biodiversity may be increasingly relevant for the functioning and diversity of the human microbiome as urbanization continues.

3.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385301

RESUMO

Microorganisms commonly inhabit energy-limited ecosystems where cellular maintenance and reproduction is highly constrained. To gain insight into how individuals persist under such conditions, we derived demographic parameters from a collection of 21 heterotrophic bacterial taxa by censusing 100 populations in an effectively closed system for 1,000 d. All but one taxon survived prolonged resource scarcity, yielding estimated times to extinction ranging over four orders of magnitude from 100 to 105 y. Our findings corroborate reports of long-lived bacteria recovered from ancient environmental samples, while providing insight into mechanisms of persistence. As death rates declined over time, lifespan was extended through the scavenging of dead cells. Although reproduction was suppressed in the absence of exogenous resources, populations continued to evolve. Hundreds of mutations were acquired, contributing to genome-wide signatures of purifying selection as well as molecular signals of adaptation. Consistent ecological and evolutionary dynamics indicate that distantly related bacteria respond to energy limitation in a similar and predictable manner, which likely contributes to the stability and robustness of microbial life.


Assuntos
Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Evolução Biológica , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Mutação , Especificidade da Espécie
4.
mSystems ; 6(4): e0053821, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34402638

RESUMO

Every seed germinating in soils, wastewater treatment, and stream confluence exemplify microbial community coalescence-the blending of previously isolated communities. Here, we present theoretical and experimental knowledge on how separated microbial communities mix, with particular focus on managed ecosystems. We adopt the community coalescence framework, which integrates metacommunity theory and meta-ecosystem dynamics, and highlight the prevalence of these coalescence events within microbial systems. Specifically, we (i) describe fundamental types of community coalescences using naturally occurring and managed examples, (ii) offer ways forward to leverage community coalescence in managed systems, and (iii) emphasize the importance of microbial ecological theory to achieving desired coalescence outcomes. Further, considering the massive dispersal events of microbiomes and their coalescences is pivotal to better predict microbial community dynamics and responses to disturbances. We conclude our piece by highlighting some challenges and unanswered question yet to be tackled.

5.
Microbiol Resour Announc ; 9(41)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033130

RESUMO

Hydrologic changes modify microbial community structure and ecosystem functions, especially in wetland systems. Here, we present 24 metagenomes from a coastal freshwater wetland experiment in which we manipulated hydrologic conditions and plant presence. These wetland soil metagenomes will deepen our understanding of how hydrology and vegetation influence microbial functional diversity.

6.
Environ Microbiol ; 22(8): 3494-3504, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510726

RESUMO

Bacterial growth efficiency (BGE) is the proportion of assimilated carbon that is converted into biomass and reflects the balance between growth and energetic demands. Often measured as an aggregate property of the community, BGE is highly variable within and across ecosystems. To understand this variation, we first identified how species identity and resource type affect BGE using 20 bacterial isolates belonging to the phylum Proteobacteria that were enriched from north temperate lakes. Using a trait-based approach that incorporated genomic and phenotypic information, we characterized the metabolism of each isolate and tested for predicted trade-offs between growth rate and efficiency. A substantial amount of variation in BGE could be explained at broad (i.e., order, 20%) and fine (i.e., strain, 58%) taxonomic levels. While resource type was a relatively weak predictor across species, it explained >60% of the variation in BGE within a given species. A metabolic trade-off (between maximum growth rate and efficiency) and genomic features revealed that BGE may be a species-specific metabolic property. Our study suggests that genomic and phylogenetic information may help predict aggregate microbial community functions like BGE and the fate of carbon in ecosystems.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Metabolismo Energético/fisiologia , Bactérias/genética , Bactérias/isolamento & purificação , Biomassa , Carbono/metabolismo , Ecossistema , Lagos/microbiologia , Microbiota/genética , Fenótipo , Filogenia
7.
FEMS Microbiol Ecol ; 96(11)2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32520336

RESUMO

Auxotrophy, or an organism's requirement for an exogenous source of an organic molecule, is widespread throughout species and ecosystems. Auxotrophy can result in obligate interactions between organisms, influencing ecosystem structure and community composition. We explore how auxotrophy-induced interactions between aquatic microorganisms affect microbial community structure and stability. While some studies have documented auxotrophy in aquatic microorganisms, these studies are not widespread, and we therefore do not know the full extent of auxotrophic interactions in aquatic environments. Current theoretical and experimental work suggests that auxotrophy links microbial community members through a complex web of metabolic dependencies. We discuss the proposed ways in which auxotrophy may enhance or undermine the stability of aquatic microbial communities, highlighting areas where our limited understanding of these interactions prevents us from being able to predict the ecological implications of auxotrophy. Finally, we examine an example of auxotrophy in harmful algal blooms to place this often theoretical discussion in a field context where auxotrophy may have implications for the development and robustness of algal bloom communities. We seek to draw attention to the relationship between auxotrophy and community stability in an effort to encourage further field and theoretical work that explores the underlying principles of microbial interactions.


Assuntos
Ecossistema , Microbiota , Proliferação Nociva de Algas , Interações Microbianas
8.
Ecology ; 101(4): e02968, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31925775

RESUMO

The movement of organisms across habitat boundaries has important consequences for populations, communities, and ecosystems. However, because most species are not well adapted to all habitat types, dispersal into suboptimal habitats could induce physiological changes associated with persistence strategies that influence community assembly. For example, high rates of cross-boundary dispersal are thought to maintain sink populations of terrestrial bacteria in aquatic habitats, but these bacteria may also persist by lowering their metabolic activity, introducing metabolic heterogeneity that buffers the population against species sorting. To differentiate between these assembly processes, we analyzed bacterial composition along a hydrological flow path from terrestrial soils through an aquatic reservoir by sequencing the active and total (active + inactive) portions of the community. When metabolic heterogeneity was ignored, our data were consistent with views that cross-boundary dispersal is important for structuring aquatic bacterial communities. In contrast, we found evidence for strong species sorting in the active portion of the aquatic community, suggesting that dispersal may have a weaker effect than persistence strategies on aquatic community assembly. By accounting for metabolic heterogeneity in complex communities, our findings clarify the roles of local- and regional-scale assembly processes in terrestrial-aquatic meta-ecosystems.


Assuntos
Ecossistema , Modelos Biológicos , Bactérias
9.
ISME J ; 13(9): 2183-2195, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31053829

RESUMO

Microorganisms are strongly influenced by the bottom-up effects of resource supply. While many species respond to fluctuations in the concentration of resources, microbial diversity may also be affected by the heterogeneity of the resource pool, which often reflects a mixture of distinct molecules. To test this hypothesis, we examined resource-diversity relationships for bacterioplankton in a set of north temperate lakes that varied in their concentration and composition of dissolved organic matter (DOM), which is an important resource for heterotrophic bacteria. Using 16S rRNA transcript sequencing and ecosystem metabolomics, we documented strong relationships between bacterial alpha-diversity (richness and evenness) and the bulk concentration and the number of molecules in the DOM pool. Similarly, bacterial community beta-diversity was related to both DOM concentration and composition. However, in some lakes the relative abundance of resource generalists, which was inversely related to the DOM concentration, may have reduced the effect of DOM heterogeneity on community composition. Together, our results demonstrate the potential metabolic interactions between bacteria and organic matter and suggest that changes in organic matter composition may alter the structure and function of bacterial communities.


Assuntos
Bactérias/isolamento & purificação , Lagos/microbiologia , Microbiota , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Ecossistema , Filogenia , RNA Ribossômico 16S/genética
11.
Front Microbiol ; 9: 1401, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018601

RESUMO

Imbalances in C:N:P supply ratios may cause bacterial resource limitations and constrain biogeochemical processes, but the importance of shifts in soil stoichiometry are complicated by the nearly limitless interactions between an immensely rich species pool and a multiple chemical resource forms. To more clearly identify the impact of soil C:N:P on bacteria, we evaluated the cumulative effects of single and coupled long-term nutrient additions (i.e., C as mannitol, N as equal concentrations NH4+ and NO3-, and P as Na3PO4) and water on communities in an Antarctic polar desert, Taylor Valley. Untreated soils possessed relatively low bacterial diversity, simplified organic C sources due to the absence of plants, limited inorganic N, and excess soil P potentially attenuating links between C:N:P. After 6 years of adding resources, an alleviation of C and N colimitation allowed one rare Micrococcaceae, an Arthrobacter species, to dominate, comprising 47% of the total community abundance and elevating soil respiration by 136% relative to untreated soils. The addition of N alone reduced C:N ratios, elevated bacterial richness and diversity, and allowed rare taxa relying on ammonium and nitrite for metabolism to become more abundant [e.g., nitrite oxidizing Nitrospira species (Nitrosomonadaceae), denitrifiers utilizing nitrite (Gemmatimonadaceae) and members of Rhodobacteraceae with a high affinity for ammonium]. Based on community co-occurrence networks, lower C:P ratios in soils following P and CP additions created more diffuse and less connected communities by disrupting 73% of species interactions and selecting for taxa potentially exploiting abundant P. Unlike amended nutrients, water additions alone elicited no lasting impact on communities. Our results suggest that as soils become nutrient rich a wide array of outcomes are possible from species dominance and the deconstruction of species interconnectedness to the maintenance of biodiversity.

12.
Nat Ecol Evol ; 2(2): 237-240, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29292397

RESUMO

One of the long-standing mysteries of evolutionary genomics is the source of the wide phylogenetic diversity in genome nucleotide composition (G + C versus A + T), which must be a consequence of interspecific differences in mutation bias, the efficiency of selection for different nucleotides or a combination of the two. We demonstrate that although genomic G + C composition is strongly driven by mutation bias, it is also substantially modified by direct selection and/or as a by-product of biased gene conversion. Moreover, G + C composition at fourfold redundant sites is consistently elevated above the neutral expectation-more so than for any other class of sites.


Assuntos
Evolução Molecular , Conversão Gênica , Genoma , Nucleotídeos/análise , Mutação , Filogenia
13.
Ecology ; 97(8): 2034-2043, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27859189

RESUMO

The movement of resources between terrestrial and aquatic habitats has strong effects on ecological processes in recipient ecosystems. Allochthonous inputs modify the quality and quantity of the available resource pool in ways that may alter the composition and stability of recipient communities. Inputs of terrestrial dissolved organic carbon (tDOC) into aquatic ecosystems represent a large influx of resources that has the potential to affect local communities, especially microorganisms. To evaluate the effects of terrestrial inputs on aquatic bacterial community composition and stability, we manipulated the supply rate of tDOC to a set of experimental ponds. Along the tDOC supply gradient, we measured changes in diversity and taxon-specific changes in relative abundance and activity. We then determined community stability by perturbing each pond using a pulse of inorganic nutrients and measuring changes in composition and activity (i.e., responsiveness) along the gradient. Terrestrial DOC supply significantly altered the composition of the active bacterial community. The composition of the active bacterial community changed via decreases in richness and evenness as well as taxon-specific changes in relative abundance and activity indicating species sorting along the gradient. Likewise, the responsiveness of the active bacterial community decreased along the gradient, which led to a more stable active community. We did not, however, observe these changes in diversity and stability in the total community (i.e., active and inactive organisms), which suggests that tDOC supply modifies bacterial community stability through functional not structural changes. Together, these results show that altered aquatic terrestrial linkages can have profound effects on the activity and stability of the base of the food web and thus can alter ecosystem functioning.


Assuntos
Bactérias , Ecossistema , Carbono , Ecologia , Cadeia Alimentar
14.
Genome Announc ; 3(3)2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26089434

RESUMO

We present a draft genome of Janthinobacterium sp. KBS0711 that was isolated from agricultural soil. The genome provides insight into the ecological strategies of this bacterium in free-living and host-associated environments.

15.
PLoS One ; 8(10): e75771, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24124511

RESUMO

There is growing evidence that terrestrial ecosystems are exporting more dissolved organic carbon (DOC) to aquatic ecosystems than they did just a few decades ago. This "browning" phenomenon will alter the chemistry, physics, and biology of inland water bodies in complex and difficult-to-predict ways. Experiments provide an opportunity to elucidate how browning will affect the stability and functioning of aquatic ecosystems. However, it is challenging to obtain sources of DOC that can be used for manipulations at ecologically relevant scales. In this study, we evaluated a commercially available source of humic substances ("Super Hume") as an analog for natural sources of terrestrial DOC. Based on chemical characterizations, comparative surveys, and whole-ecosystem manipulations, we found that the physical and chemical properties of Super Hume are similar to those of natural DOC in aquatic and terrestrial ecosystems. For example, Super Hume attenuated solar radiation in ways that will not only influence the physiology of aquatic taxa but also the metabolism of entire ecosystems. Based on its chemical properties (high lignin content, high quinone content, and low C:N and C:P ratios), Super Hume is a fairly recalcitrant, low-quality resource for aquatic consumers. Nevertheless, we demonstrate that Super Hume can subsidize aquatic food webs through 1) the uptake of dissolved organic constituents by microorganisms, and 2) the consumption of particulate fractions by larger organisms (i.e., Daphnia). After discussing some of the caveats of Super Hume, we conclude that commercial sources of humic substances can be used to help address pressing ecological questions concerning the increased export of terrestrial DOC to aquatic ecosystems.


Assuntos
Ecossistema , Carbono/análise , Substâncias Húmicas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...