Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc SIAM Symp Simplicity Algorithms ; 2021: 142-155, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34723248

RESUMO

We study the problem of estimating the trace of a matrix A that can only be accessed through matrix-vector multiplication. We introduce a new randomized algorithm, Hutch++, which computes a (1 ± ε) approximation to tr( A ) for any positive semidefinite (PSD) A using just O(1/ε) matrix-vector products. This improves on the ubiquitous Hutchinson's estimator, which requires O(1/ε 2) matrix-vector products. Our approach is based on a simple technique for reducing the variance of Hutchinson's estimator using a low-rank approximation step, and is easy to implement and analyze. Moreover, we prove that, up to a logarithmic factor, the complexity of Hutch++ is optimal amongst all matrix-vector query algorithms, even when queries can be chosen adaptively. We show that it significantly outperforms Hutchinson's method in experiments. While our theory requires A to be positive semidefinite, empirical gains extend to applications involving non-PSD matrices, such as triangle estimation in networks.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34421392

RESUMO

We initiate the study of numerical linear algebra in the sliding window model, where only the most recent W updates in a stream form the underlying data set. Although many existing algorithms in the sliding window model use or borrow elements from the smooth histogram framework (Braverman and Ostrovsky, FOCS 2007), we show that many interesting linear-algebraic problems, including spectral and vector induced matrix norms, generalized regression, and lowrank approximation, are not amenable to this approach in the row-arrival model. To overcome this challenge, we first introduce a unified row-sampling based framework that gives randomized algorithms for spectral approximation, low-rank approximation/projection-cost preservation, and ℓ 1-subspace embeddings in the sliding window model, which often use nearly optimal space and achieve nearly input sparsity runtime. Our algorithms are based on "reverse online" versions of offline sampling distributions such as (ridge) leverage scores, ℓ 1 sensitivities, and Lewis weights to quantify both the importance and the recency of a row; our structural results on these distributions may be of independent interest for future algorithmic design. Although our techniques initially address numerical linear algebra in the sliding window model, our row-sampling framework rather surprisingly implies connections to the well-studied online model; our structural results also give the first sample optimal (up to lower order terms) online algorithm for low-rank approximation/projection-cost preservation. Using this powerful primitive, we give online algorithms for column/row subset selection and principal component analysis that resolves the main open question of Bhaskara et al. (FOCS 2019). We also give the first online algorithm for ℓ 1-subspace embeddings. We further formalize the connection between the online model and the sliding window model by introducing an additional unified framework for deterministic algorithms using a merge and reduce paradigm and the concept of online coresets, which we define as a weighted subset of rows of the input matrix that can be used to compute a good approximation to some given function on all of its prefixes. Our sampling based algorithms in the row-arrival online model yield online coresets, giving deterministic algorithms for spectral approximation, low-rank approximation/projection-cost preservation, and ℓ 1-subspace embeddings in the sliding window model that use nearly optimal space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...