Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 297(4): 101113, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34437902

RESUMO

There are five known general catalytic mechanisms used by enzymes to catalyze carbohydrate epimerization. The amino sugar epimerase N-acetylmannosamine-6-phosphate 2-epimerase (NanE) has been proposed to use a deprotonation-reprotonation mechanism, with an essential catalytic lysine required for both steps. However, the structural determinants of this mechanism are not clearly established. We characterized NanE from Staphylococcus aureus using a new coupled assay to monitor NanE catalysis in real time and found that it has kinetic constants comparable with other species. The crystal structure of NanE from Staphylococcus aureus, which comprises a triosephosphate isomerase barrel fold with an unusual dimeric architecture, was solved with both natural and modified substrates. Using these substrate-bound structures, we identified the following active-site residues lining the cleft at the C-terminal end of the ß-strands: Gln11, Arg40, Lys63, Asp124, Glu180, and Arg208, which were individually substituted and assessed in relation to the mechanism. From this, we re-evaluated the central role of Glu180 in this mechanism alongside the catalytic lysine. We observed that the substrate is bound in a conformation that ideally positions the C5 hydroxyl group to be activated by Glu180 and donate a proton to the C2 carbon. Taken together, we propose that NanE uses a novel substrate-assisted proton displacement mechanism to invert the C2 stereocenter of N-acetylmannosamine-6-phosphate. Our data and mechanistic interpretation may be useful in the development of inhibitors of this enzyme or in enzyme engineering to produce biocatalysts capable of changing the stereochemistry of molecules that are not amenable to synthetic methods.


Assuntos
Proteínas de Bactérias/química , Carboidratos Epimerases/química , Hexosaminas/química , Staphylococcus aureus/enzimologia , Fosfatos Açúcares/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Carboidratos Epimerases/genética , Catálise , Hexosaminas/genética , Hexosaminas/metabolismo , Mutação de Sentido Incorreto , Conformação Proteica em Folha beta , Domínios Proteicos , Staphylococcus aureus/genética , Fosfatos Açúcares/genética , Fosfatos Açúcares/metabolismo
2.
Biochim Biophys Acta Proteins Proteom ; 1868(1): 140302, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678195

RESUMO

Bacteriophage endolysins have the potential to be a long-term antibacterial replacement for antibiotics. The exogenous application of endolysins on some bacteria results in rapid cell lysis. The prospects for endolysins are furthered by the ability to engineer them; novel endolysins can be developed with optimised stability, specificity, and lytic function. But the success of endolysin engineering and application requires a comprehensive understanding of the relationship between the enzymes biochemical, biophysical and bacteriolytic properties. Here, we examine their catalytic mechanisms, opportunities for developing novel endolysins, and highlight areas where a better understanding would support their long-term success as antibacterial agents.


Assuntos
Antibacterianos/química , Bacteriófagos/enzimologia , Hidrolases/química , Catálise , Engenharia de Proteínas
3.
Biophys Rev ; 10(2): 219-227, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29222808

RESUMO

Eukaryotic cell surfaces are decorated with a complex array of glycoconjugates that are usually capped with sialic acids, a large family of over 50 structurally distinct nine-carbon amino sugars, the most common member of which is N-acetylneuraminic acid. Once made available through the action of neuraminidases, bacterial pathogens and commensals utilise host-derived sialic acid by degrading it for energy or repurposing the sialic acid onto their own cell surface to camouflage the bacterium from the immune system. A functional sialic acid transporter has been shown to be essential for the uptake of sialic acid in a range of human bacterial pathogens and important for host colonisation and persistence. Here, we review the state-of-play in the field with respect to the molecular mechanisms by which these bio-nanomachines transport sialic acids across bacterial cell membranes.

4.
FEBS Lett ; 590(23): 4414-4428, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27943302

RESUMO

N-Acetylneuraminate lyase is the first committed enzyme in the degradation of sialic acid by bacterial pathogens. In this study, we analyzed the kinetic parameters of N-acetylneuraminate lyase from methicillin-resistant Staphylococcus aureus (MRSA). We determined that the enzyme has a relatively high KM of 3.2 mm, suggesting that flux through the catabolic pathway is likely to be controlled by this enzyme. Our data indicate that sialic acid alditol, a known inhibitor of N-acetylneuraminate lyase enzymes, is a stronger inhibitor of MRSA N-acetylneuraminate lyase than of Clostridium perfringens N-acetylneuraminate lyase. Our analysis of the crystal structure of ligand-free and 2R-sialic acid alditol-bound MRSA N-acetylneuraminate lyase suggests that subtle dynamic differences in solution and/or altered binding interactions within the active site may account for species-specific inhibition.


Assuntos
Inibidores Enzimáticos/farmacologia , Staphylococcus aureus Resistente à Meticilina/enzimologia , Oxo-Ácido-Liases/antagonistas & inibidores , Oxo-Ácido-Liases/química , Sequência de Aminoácidos , Humanos , Cinética , Modelos Moleculares , Ácido N-Acetilneuramínico/metabolismo , Oxo-Ácido-Liases/metabolismo , Estrutura Quaternária de Proteína , Especificidade da Espécie
5.
Arch Biochem Biophys ; 503(2): 202-6, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20709017

RESUMO

Escherichia coli dihydrodipicolinate synthase (DHDPS, E.C. 4.2.1.52), a natively homotetrameric enzyme was converted to a monomeric species through the introduction of destabilising interactions at two different subunit interfaces allowing exploration of the roles of the quaternary structure in affecting catalytic competency. The double mutant DHDPS-L197D/Y107W displays gel filtration characteristics consistent with a single non-interacting monomeric species, which was confirmed by sedimentary velocity experiments. This monomer was shown to be catalytically active, but with reduced catalytic efficiency (k(cat)=9.8±0.5s(-1)), displaying 8% of the specific activity of the wild-type enzyme. The Michaelis constants for the substrates pyruvate and for (S)-aspartate semialdehyde increased by an order of magnitude, indicating that quaternary structure plays a significant role in substrate specificity. This monomeric species exhibited an enhanced propensity for aggregation and inactivation, indicating that whilst the oligomerization is not an intrinsic criterion for catalysis, higher oligomeric forms may benefit from both increased catalytic efficiency and diminished aggregation propensity. Furthermore, allosteric inhibition by (S)-lysine was abolished for DHDPS-L197D/Y107W, confirming the importance of the dimeric unit as the minimal functional assembly for efficient (S)-lysine binding.


Assuntos
Proteínas de Escherichia coli/química , Hidroliases/química , Sítios de Ligação , Catálise , Estabilidade Enzimática , Cinética , Lisina/metabolismo , Modelos Moleculares , Mutação Puntual , Estrutura Quaternária de Proteína/fisiologia , Especificidade por Substrato
6.
Biochimie ; 92(7): 837-45, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20353808

RESUMO

Dihydrodipicolinate synthase (DHDPS, E.C. 4.2.1.52), a validated antibiotic target, catalyses the first committed step in the lysine biosynthetic pathway: the condensation reaction between (S)-aspartate beta-semialdehyde [(S)-ASA] and pyruvate via the formation of a Schiff base intermediate between pyruvate and the absolutely conserved active-site lysine. Escherichia coli DHDPS mutants K161A and K161R of the active-site lysine were characterised for the first time. Unexpectedly, the mutant enzymes were still catalytically active, albeit with a significant decrease in activity. The k(cat) values for DHDPS-K161A and DHDPS-K161R were 0.06 +/- 0.02 s(-1) and 0.16 +/- 0.06 s(-1) respectively, compared to 45 +/- 3 s(-1) for the wild-type enzyme. Remarkably, the K(M) values for pyruvate increased by only 3-fold for DHDPS-K161A and DHDPS-K161R (0.45 +/- 0.04 mM and 0.57 +/- 0.06 mM, compared to 0.15 +/- 0.01 mM for the wild-type DHDPS), while the K(M) values for (S)-ASA remained the same for DHDPS-K161R (0.12 +/- 0.01 mM) and increased by only 2-fold for DHDPS-K161A (0.23 +/- 0.02 mM) and the K(i) for lysine was unchanged. The X-ray crystal structures of DHDPS-K161A and DHDPS-K161R were solved at resolutions of 2.0 and 2.1 A respectively and showed no changes in their secondary or tertiary structures when compared to the wild-type structure. The crystal structure of DHDPS-K161A with pyruvate bound at the active site was solved at a resolution of 2.3 A and revealed a defined binding pocket for pyruvate that is thus not dependent upon lysine 161. Taken together with ITC and NMR data, it is concluded that although lysine 161 is important in the wild-type DHDPS-catalysed reaction, it is not absolutely essential for catalysis.


Assuntos
Domínio Catalítico , Hidroliases/química , Hidroliases/metabolismo , Lisina/metabolismo , Calorimetria , Dicroísmo Circular , Cristalografia por Raios X , Escherichia coli/enzimologia , Hidroliases/genética , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Ressonância Magnética Nuclear Biomolecular , Termodinâmica
7.
Biochimie ; 92(3): 254-62, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20025926

RESUMO

Thermodynamic binding information, obtained via isothermal titration calorimetry (ITC), provides new insights into the binding of substrates, and of allosteric inhibitor interactions of dihydrodipicolinate synthase (DHDPS) from Escherichia coli. DHDPS catalyses the first committed step in (S)-lysine biosynthesis: the Schiff-base mediated aldol condensation of pyruvate with (S)-aspartate semi-aldehyde. Binding studies indicate that pyruvate is a weak binder (0.023 mM) but that (S)-ASA does not interact with the enzyme in the absence of a Schiff-base with pyruvate. These results support the assignment of a ping pong catalytic mechanism in which enthalpically driven Schiff-base formation (DeltaH = -44.5 +/- 0.1 kJ mol(-1)) provides the thermodynamic impetus for pyruvate association. The second substrate, (S)-ASA, was observed to bind to a Schiff-base mimic (DeltaH = -2.8 +/- 0.1 kJ mol(-1)) formed through the reduction of the intermediate pyruvyl-Schiff-base complex. The binding interaction of (S)-lysine was characterised as a cooperative event in which an entropic pre-organisation step (TDeltaS = 17.6 +/- 1.1 kJ mol(-1)) precedes a secondary enthalpic association (DeltaH = -21.6 +/- 0.2 kJ mol(-1)). This allosteric association was determined to be of a mixed competitive nature in which heterotropic ligand cooperativity was observed to subtly influence the binding events. These results offer new insights into the inhibition of this enzyme, a validated antibiotic target.


Assuntos
Calorimetria/métodos , Hidroliases/química , Hidroliases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Escherichia coli/enzimologia , Hidroliases/antagonistas & inibidores , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ácido Pirúvico/metabolismo , Bases de Schiff/química , Especificidade por Substrato , Termodinâmica , Thermotoga maritima/enzimologia
8.
Biochem Biophys Res Commun ; 380(4): 802-6, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19338756

RESUMO

Dihydrodipicolinate synthase (DHDPS) catalyses the first committed step in the biosynthesis of (S)-lysine, an essential constituent of bacterial cell walls. Escherichia coli DHDPS is homotetrameric, and each monomer contains an N-terminal (alpha/beta)(8)-barrel, responsible for catalysis and regulation, and three C-terminal alpha-helices, the function of which is unknown. This study investigated the C-terminal domain of E. coli DHDPS by characterising a C-terminal truncated DHDPS (DHDPS-H225*). DHDPS-H225* was unable to complement an (S)-lysine auxotroph, and showed significantly reduced solubility, stability, and maximum catalytic activity (k(cat)=1.20+/-0.01 s(-1)), which was only 1.6% of wild type E. coli DHDPS (DHDPS-WT). The affinity of DHDPS-H225* for substrates and the feedback inhibitor, (S)-lysine, remained comparable to DHDPS-WT. These changes were accompanied by disruption in the quaternary structure, which has previously been shown to be essential for efficient catalysis in this enzyme.


Assuntos
Escherichia coli/enzimologia , Hidroliases/química , Catálise , Estabilidade Enzimática , Hidroliases/genética , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína/genética
9.
Org Biomol Chem ; 6(20): 3854-62, 2008 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-18843418

RESUMO

An exploration of the chemistry of the spiro-mamakone system, exemplified by the cytotoxic, fungal metabolite spiro-mamakone A, is presented. The first reported synthesis of the spiro-mamakone carbon skeleton was achieved, as well as the synthesis of a variety of closely related analogues of the natural product. Biological testing of the synthetic analogues generated a structure-activity profile for the natural product, establishing the importance of the enedione moiety to biological activity.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Naftalenos/síntese química , Naftalenos/farmacologia , Compostos de Espiro/síntese química , Compostos de Espiro/farmacologia , Acetais , Animais , Antineoplásicos/química , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Camundongos , Naftalenos/química , Compostos de Espiro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...