Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(27): 29300-29309, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39005788

RESUMO

Recognition of fluoride in water through the fluoride-induced Brönsted acid-base deprotonation reaction of an organic probe molecule is still a challenging task owing to the lower basicity of fluoride ions and the instability of the conjugate base of the probe molecules in aqueous medium. Herein, we report a complementary strategy in which the conjugate base of the studied bis-thiourea molecule in dimethyl sulfoxide (DMSO) medium is simultaneously stabilized through chelation of the Ni(II) ion, which eventually facilitates the recognition of the fluoride ion in water samples. The recognition methodology is validated colorimetrically and electrochemically, and finally, the applicability of the approach is explored with water samples collected from fluoride-affected areas. The limit of detection value for the fluoride ion in water medium was found to be 0.2 and 0.3 ppm with UV-visible spectroscopy and differential pulse voltammetry measurements, respectively. The methodology is also demonstrated on a paper strip for the detection of the fluoride ion with the naked eye and a smartphone-based RGB sensor. The scheme has been shown to be effective in enhancing the aqueous fluoride recognition ability of the organic probe molecules with acidic hydrogen prone to deprotonation by the fluoride ion.

2.
ACS Omega ; 5(14): 8321-8333, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32309743

RESUMO

In this paper, we have designed a series of oligomers based on the donor-acceptor concept. Here, acceptor bay-annulated indigo (BAI) dye and donor N-methyl-4,5-diazacarbazole (DAC) are joined by a thiophene linkage. We have substituted the 5th and 5'th positions of the acceptor unit and the 2nd position of the donor unit with various electron-withdrawing and electron-donating groups to study various structural and electronic properties of the compounds. In this regard, we have calculated the dihedral angle, distortion energy, bond length alteration (BLA) parameters, bang gap (Δ H - L ) values, partial density of states (PDOS), electrostatic potential (ESP) surface analysis, reorganization energy, charge transfer rates, hopping mobility values, and absorption spectra of the compounds. The ESP plots of the compounds indicate significant charge separation in the studied compounds. Our study manifests that the designed compounds are prone to facile charge transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...