Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 149(11): 3245-3262, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38687206

RESUMO

Artificial superhydrophobic surfaces that do not absorb water, like the lotus leaf, show tremendous promise in numerous applications. However, superhydrophobic surfaces are rarely used because of their low stability and endurance. A stable organic superhydrophobic surface (SHS) composed of novel morphology Ag-nanoparticles (NPs) has been fabricated on a copper alloy via etching, immersion, spraying, and annealing treatment, along with a static water contact angle (WCA) of 158 ± 1° and sliding angle (SA) less than 2°. The surface texture, composition, and morphology of the substrate surfaces were explored by using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and DFT-based Ag atom distribution. The anti-corrosion study of non-coated and Ag-NP-coated copper alloy was undertaken using electrochemical impedance spectroscopy. Ag-NPs +SA@SHS enhanced the corrosion resistance as compared with bare Cu alloy. The water droplet rolled down the coated Cu alloy, removed the chalk powder from the surface, and indicated an excellent self-cleaning function. Photodegradation of Congo red (CR) and methylene blue (MB) dye samples was assessed by measuring the absorbance through UV-Visible spectrophotometry, where the Ag-NPs coated on the copper alloy were used as a catalyst. The performance of the SHS@Ag-NPs in the aqueous solution was 99.31% and 98.12% for industrial pollutants (CR and MB), with degradation rates of 5.81 × 10-2 s-1 and 5.89 × 10-2 s-1, respectively. These findings demonstrated a simple, rapid, and low-energy fabrication technique for SHS@Ag-NPs. This research reveals a valuable approach for the fabrication of SHS@Ag-NPs on various substrates to extend the superhydrophobic surfaces with ultra-fast self-healing properties, for outdoor applications such as anti-corrosion, for an innovative approach for the remediation of polluted water treatment, and for industrial applications.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 190: 197-207, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28922646

RESUMO

Biologically active triazole Schiff base ligand (L) and metal complexes [Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] are reported herein. The ligand acted as tridentate and coordinated towards metallic ions via azomethine-N, triazolic-N moiety and deprotonated-O of phenyl substituents in an octahedral manner. These compounds were characterized by physical, spectral and analytical analysis. The synthesized ligand and metal complexes were screened for antibacterial pathogens against Chromohalobacter salexigens, Chromohalobacter israelensi, Halomonas halofila and Halomonas salina, antifungal bioassay against Aspergillus niger and Aspergellus flavin, antioxidant (DPPH, phosphomolybdate) and also for enzyme inhibition [butyrylcholinesterase (BChE) and acetylcholinesterase (AChE)] studies. The results of these activities indicated the ligand to possess potential activity which significantly increased upon chelation. Moreover, vibrational bands, frontier molecular orbitals (FMOs) and natural bond analysis (NBO) of ligand (1) were carried out through density functional theory (DFT) with B3lYP/6-311++G (d,p) approach. While, UV-Vis analysis was performed by time dependent TD-DFT with B3lYP/6-311++G (d,p) method. NBO analysis revealed that investigated compound (L) contains enormous molecular stability owing to hyper conjugative interactions. Theoretical spectroscopic findings showed good agreement to experimental spectroscopic data. Global reactivity descriptors were calculated using the energies of FMOs which indicated compound (L) might be bioactive. These parameters confirmed the charge transfer phenomenon and reasonable correspondence with experimental bioactivity results.


Assuntos
Fenômenos Ópticos , Triazóis/química , Triazóis/síntese química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Bioensaio , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Condutividade Elétrica , Inibidores Enzimáticos/farmacologia , Fungos/efeitos dos fármacos , Ligantes , Magnetismo , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Espectroscopia de Prótons por Ressonância Magnética , Bases de Schiff/farmacologia , Espectrofotometria Infravermelho , Eletricidade Estática , Triazóis/farmacologia , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...