Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Skin Res Technol ; 19(3): 314-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23573804

RESUMO

BACKGROUND/PURPOSE: Computer-aided design (CAD) methods are highly valuable for the analysis of skin lesions using digital dermoscopy due to low rate of diagnostic accuracy of expert dermatologist. In computerized diagnostic methods, automatic border detection is the first and crucial step. METHOD: In this study, a novel unified approach is proposed for automatic border detection (ABD). A preprocessing step is performed by normalized smoothing filter (NSF) to reduce background noise. Mixture models technique is then utilized to initially segment the lesion area roughly. Afterward, local entropy thresholding is performed to extract the lesion candidate pixels and the lesion border is smoothed using morphological reconstruction. RESULTS: The overall ABD system is tested on a set of 100 dermoscopy images with ground truth. A comparative study was conducted with the other three state-of-the-art methods using statistical metrics. This ABD technique has the minimal average error probability rate of 5%, true detection of 92.10% and false positive rate of 6.41%. CONCLUSION: Results demonstrate that the proposed method segments the lesion area accurately. Sample dataset and execute software are available online and can be downloaded from: http://cs.ntu.edu.pk/research.


Assuntos
Algoritmos , Dermoscopia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Biológicos , Modelos Estatísticos , Reconhecimento Automatizado de Padrão/métodos , Neoplasias Cutâneas/patologia , Simulação por Computador , Entropia , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
Skin Res Technol ; 19(1): e490-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22882675

RESUMO

BACKGROUND/PURPOSE: Dermoscopy images often suffer from low contrast caused by different light conditions, which reduces the accuracy of lesion border detection. Accordingly for lesion recognition, automatic melanoma border detection (MBD) is an initial as well as crucial task. METHOD: In this article, a novel perceptually oriented approach for MBD is presented by combing region and edge-based segmentation techniques. The MBD system for color contrast and segmentation improvement consists of four main steps: first, the RGB dermoscopy image is transformed to CIE L*a*b* color space, lesion contrast is then enhanced by adjusting and mapping the intensity values of the lesion pixels in the specified range using the three channels of CIE L*a*b*, a hill-climbing algorithm is used later to detect region-of-interest (ROI) map in a perceptually oriented color space using color channels (L*,a*,b*) and finally, an adaptive thresholding is applied to determine the optimal lesion border. Manually drawn borders obtained from an experienced dermatologist are utilized as a ground truth for performance evaluation. RESULTS: The proposed MBD method is tested on a total of 100 dermoscopy images. A comparative study with three state-of-the-art color and texture-based segmentation techniques (JSeg, dermatologists-like tumor area extraction: DTEA and region-based active contours: RAC), is also conducted to show the effectiveness of our MBD method using measures of true positive rate (TPR), false positive rate (FPR), and error probability (EP). Among different algorithms, our MBD algorithm achieved TPR of 94.25%, FPR of 3.56%, and EP of 4%. CONCLUSIONS: The proposed MBD approach is highly accurate to detect the lesion border area. The MBD software and sample of dermoscopy images can be downloaded at http://cs.ntu.edu.pk/research.php.


Assuntos
Algoritmos , Dermoscopia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Melanoma/patologia , Reconhecimento Automatizado de Padrão/métodos , Neoplasias Cutâneas/patologia , Colorimetria/métodos , Colorimetria/normas , Bases de Dados Factuais , Dermoscopia/normas , Reações Falso-Negativas , Reações Falso-Positivas , Humanos , Interpretação de Imagem Assistida por Computador/normas , Modelos Biológicos , Reconhecimento Automatizado de Padrão/normas , Reprodutibilidade dos Testes , Design de Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...