Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Res (Camb) ; 13(4): tfae094, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38957782

RESUMO

This study evaluated the anti-oxidant and anti-diabetic potential of Caralluma fimbriata (CF) in 28-days rat modelling trial. Diabetes is a chronic disorder characterized by elevated blood glucose levels and insulin resistance and cause microvascular and macrovascular issues. Caralluma fimbriata was evaluated for its nutritional composition along with anti-oxidant potential of CF powder (CFP) and CF extract (CFE) using total phenolic contents (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric ion reducing antioxidant power (FRAP) assays. Furthermore, anti-diabetic potential was computed by dividing rats into four groups of 5 individuals each. Rats of Group I was non-diabetic and no supplementation was given while rats of group II were diabetic and no supplementation was given. While group III and group IV rats were diabetic and received CFP and CFE supplementation respectively. CF powder's TPC, and DPPH and FRAP activity were observed maximum at 44.17 ± 0.006 (µgFe/g) in water, 68.75 ± 0.49 (µgFe/g) in acetone and 800.81 ± 0.99 (µgFe/g) in hexane. Supplementation of CFP and CFE reduced blood glucose effectively i.e. (125.00 ± 4.04 and 121.00 ± 4.49 mg/dL, respectively). Moreover, the consumption of C. fimbriata can be helpful in the management of diabetes mellitus due to its glucose lowering potential, anorexic effects, anti-oxidant potential and α-amylase inhibition.

2.
Sci Rep ; 13(1): 4572, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941313

RESUMO

This article presents that acrylate copolymers are the potential candidate against the adsorption of bovine serum albumin (BSA). A series of copolymers poly(methyl methacrylate) (pMMA), poly(3-sulfopropyl methacrylate-co-methyl methacrylate) p(SPMA-co-MMA), and poly(dimethylaminoethyl methacrylate-co-methyl methacrylate) p(DMAEMA-co-MMA) were synthesized via free radical polymerization. These amphiphilic copolymers are thermally stable with a glass transition temperature (Tg) 50-120 °C and observed the impact of surface charge on amphiphilic copolymers to control interactions with the bovine serum albumin (BSA). These copolymers pMD1 and pMS1 have surface charges, - 56.6 and - 72.6 mV at pH 7.4 in PBS buffer solution that controls the adsorption capacity of bovine serum albumin (BSA) on polymers surface. Atomic force microscopy (AFM) analysis showed minimum roughness of 0.324 nm and 0.474 nm for pMS1 and pMD1. Kinetic studies for BSA adsorption on these amphiphilic copolymers showed the best fitting of the pseudo-first-order model that showed physisorption and attained at 25 °C and pH 7.4 within 24 h.


Assuntos
Polímeros , Soroalbumina Bovina , Cinética , Polimetil Metacrilato , Acrilatos , Metacrilatos
3.
Polymers (Basel) ; 14(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080621

RESUMO

In this research work, polymer blends of poly-lactic acid (PLA)/ethylene vinyl acetate (EVA) were prepared as the drug carrier materials for a bi-layer drug-loaded coating film for coronary stents. Different optimum compositions of blends were prepared by using an intense mixer. Then, the blends were hot-pressed and later cold-pressed to prepare for films of different thickness. The changes in weight, surface analysis and biodegradability with increasing time were studied using Scanning electron microscopy (SEM), weight loss and biodegradability tests. The mechanical and thermal properties of drug-loaded films were studied through universal testing machine (UTM) and thermo-gravimetric analysis (TGA). The effects of PLA, EVA and drug contents on in-vitro drug contents were investigated through the Ultraviolet-Visible Spectroscopy (UV-VIS) chemical analysis technique. The results obtained clearly showed that the addition of PLA promoted the unleashing of the drug whereas the addition of EVA nearly did not have the same affect. The mechanical properties of these various films can be tuned by adjusting the contents of blend parts. The factors affecting the unleashing of the drug became a serious matter of concern in evaluating the performance of bio-resorbable drug eluting stents. As a result, today's chemical blends may be useful drug carrier materials for drug-loaded tube coatings capable delivering purgative drug in an incredibly tunable and regulated manner.

4.
Membranes (Basel) ; 12(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35736262

RESUMO

Atmospheric pollution has become a critical problem for modern society; therefore, the research in this area continually aims to develop a high-performance gas sensor for health care and environmental safety. Researchers have made a significant contribution in this field by developing highly sensitive sensor-based novel selective materials. The aim of this article is to review recent developments and progress in the selective and sensitive detection of environmentally toxic gases. Different classifications of gas sensor devices are discussed based on their structure, the materials used, and their properties. The mechanisms of the sensing devices, identified by measuring the change in physical property using adsorption/desorption processes as well as chemical reactions on the gas-sensitive material surface, are also discussed. Additionally, the article presents a comprehensive review of the different morphologies and dimensions of mixed heterostructure, multilayered heterostructure, composite, core-shell, hollow heterostructure, and decorated heterostructure, which tune the gas-sensing properties towards hazardous gases. The article investigates in detail the growth and interface properties, concentrating on the material configurations that could be employed to prepare nanomaterials for commercial gas-sensing devices.

5.
Polymers (Basel) ; 14(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566995

RESUMO

The current study aims to synthesize bimetal oxide nanoparticles (zinc and manganese ions) using the carica papaya leaf extract. The crystallite size of the nanoparticle from X-ray diffraction method was found to be 19.23 nm. The nanosheet morphology was established from Scanning Electron Microscopy. Energy-dispersive X-ray diffraction was used to determine the elemental content of the synthesized material. The atomic percentage of Mn and Zn was found to be 15.13 and 26.63. The weight percentage of Mn and Zn was found to be 7.08 and 10.40. From dynamic light scattering analysis, the hydrodynamic diameter and zeta potential was found to be 135.1 nm and -33.36 eV. The 1,1-diphenyl-2-picryl hydroxyl radical, hydroxyl radical, FRAP, and hydrogen peroxide scavenging tests were used to investigate the antioxidant activity of Mn-Zn NPs. Mn-Zn NPs have substantial antioxidant properties. The photocatalytic activity of the Mn-Zn NPs was assessed by their ability to degrade Erichrome black T (87.67%), methyl red dye (78.54%), and methyl orange dye (69.79%). Additionally, it had significant antimicrobial action S. typhi showed a higher zone of inhibition 14.3 ± 0.64 mm. Mn-Zn nanoparticles were utilized as a catalyst for p-nitrophenol reduction. The bimetal oxide Mn-Zn NPs synthesized using C. papaya leaf extract exhibited promising dye degradation activity in wastewater treatment. Thus, the aforementioned approach will be a novel, low cost and ecofriendly approach.

6.
Gels ; 8(5)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35621603

RESUMO

ZnFe2O4 as an anode that is believed to attractive. Due to its large theoretical capacity, this electrode is ideal for Lithium-ion batteries. However, the performance of ZnFe2O4 while charging and discharging is limited by its volume growth. In the present study, carbon-coated ZnFe2O4 is synthesized by the sol-gel method. Carbon is coated on the spherical surface of ZnFe2O4 by in situ coating. In situ carbon coating alleviates volume expansion during electrochemical performance and Lithium-ion mobility is accelerated, and electron transit is accelerated; thus, carbon-coated ZnFe2O4 show good electrochemical performance. After 50 cycles at a current density of 0.1 A·g-1, the battery had a discharge capacity of 1312 mAh·g-1 and a capacity of roughly 1220 mAh·g-1. The performance of carbon-coated ZnFe2O4 as an improved anode is electrochemically used for Li-ion energy storage applications.

7.
Nanomaterials (Basel) ; 11(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34835581

RESUMO

This research endeavor aimed to synthesize the lead (II) diphenyldiselenophosphinate complex and its use to obtain lead selenide nanostructured depositions and further the impedance spectroscopic analysis of these obtained PbSe nanostructures, to determine their roles in the electronics industry. The aerosol-assisted chemical vapor deposition technique was used to provide lead selenide deposition by decomposition of the complex at different temperatures using the glass substrates. The obtained films were revealed to be a pure cubic phase PbSe, as confirmed by X-ray diffraction analysis. SEM and TEM micrographs demonstrated three-dimensionally grown interlocked or aggregated nanocubes of the obtained PbSe. Characteristic dielectric measurements and the impedance spectroscopy analysis at room temperature were executed to evaluate PbSe properties over the frequency range of 100 Hz-5 MHz. The dielectric constant and dielectric loss gave similar trends, along with altering frequency, which was well explained by the Koops theory and Maxwell-Wagner theory. The effective short-range translational carrier hopping gave rise to an overdue remarkable increase in ac conductivity (σac) on the frequency increase. Fitting of a complex impedance plot was carried out with an equivalent circuit model (Rg Cg) (Rgb Qgb Cgb), which proved that grains, as well as grain boundaries, are responsible for the relaxation processes. The asymmetric depressed semicircle with the center lower to the impedance real axis provided a clear explanation of non-Debye dielectric behavior.

8.
Membranes (Basel) ; 11(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34832056

RESUMO

A rapid increase in population worldwide is giving rise to the severe problem of safe drinking water availability, necessitating the search for solutions that are effective and economical. For this purpose, membrane technology has shown a lot of promise but faces the challenge of fouling, leading to a reduction in its lifetime. In this study, ultrafiltration polyethersulfone membranes were synthesized in two different concentrations, 16% wt. and 20% wt., using the phase inversion method. Chitosan and activated carbon were incorporated as individual fillers and then as composites in both the concentrations. A novel thiolated chitosan/activated carbon composite was introduced into a polyethersulfone membrane matrix. The membranes were then analyzed using Attenuated Total Reflection-Fourier-Transform Infrared spectroscopy(ATR-FTIR), Scanning Electron Microscopy (SEM), optical profilometry, gravimetric analysis, water retention, mechanical testing and contact angle. For membranes with the novel thiolated chitosan/activated carbon composite, Scanning Electron Microscopy micrographs showed better channels, indicating a better permeability possibility, reiterated by the flux rate results. The flux rate and bovine serum albumin flux were also assessed, and the results showed an increase from 105 L/m2h to 114 L/m2h for water flux and the antifouling determined by bovine serum albumin flux increased from 23 L/m2h to 51 L/m2h. The increase in values of water uptake from 22.84% to 76.5% and decrease in contact angle from 64.5 to 55.7 showed a significant increase in the hydrophilic character of the membrane.

9.
Membranes (Basel) ; 11(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803777

RESUMO

A commercial thin film composite (TFC) polyamide (PA) reverse osmosis membrane was grafted with 3-sulfopropyl methacrylate potassium (SPMK) to produce PA-g-SPMK by atom transfer radical polymerization (ATRP). The grafting of PA was done at varied concentrations of SPMK, and its effect on the surface composition and morphology was studied by Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), optical profilometry, and contact angle analysis. The grafting of hydrophilic ionically charged PSPMK polymer brushes having acrylate and sulfonate groups resulted in enhanced hydrophilicity rendering a reduction of contact angle from 58° of pristine membrane sample labeled as MH0 to 10° for a modified membrane sample labeled as MH3. Due to the increased hydrophilicity, the flux rate rises from 57.1 L m-2 h-1 to 71.2 L m-2 h-1, and 99% resistance against microbial adhesion (Escherichia coli and Staphylococcus aureus) was obtained for MH3 after modification.

10.
Polymers (Basel) ; 13(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435345

RESUMO

Amphiphilic copolymers are recognized as important biomaterials and used as antibacterial agents due to their effective inhibition of bacterial growth. In current study, the amphiphilic copolymers of P(DMAEMA-co-MMA) were synthesized using free radical polymerization by varying the concentrations of hydrophilic monomer 2-dimethylamino ethylmethacrylate (DMAEMA) and hydrophobic monomer methyl methacrylate (MMA) having PDI value of 1.65-1.93. The DMAEMA monomer, through ternary amine with antibacterial property optimized copolymers, P(DMAEMA-co-MMA), compositions to control biofilm adhesion. Antibacterial activity of synthesized copolymers was elucidated against Gram-positive Staphylococcus aureus (ATCC 6538) and Gram-negative Escherchia coli (ATCC 8739) by disk diffusion method, and zones of inhibition were measured. The desired composition that was PDM1 copolymer had shown good zones of inhibition i.e., 19 ± 0.33 mm and 20 ± 0.33 mm for E. coli and S. aureus respectively. The PDM1 and PDM2 have exhibited significant control over bacterial biofilm adhesion as tested by six well plate method. SEM study of bacterial biofilm formation has illustrated that these copolymers act in a similar fashion like cationic biocide. These compositions viz. PDM1 and PDM2, may be useful in development of bioreactors, sensors, surgical equipment and drug delivery devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...