Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 269(1): 53-61, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14651895

RESUMO

A new oblique impinging-jet (OBIJ) cell was developed, suitable for colloid deposition studies at various interfaces. In contrast to previously used orthogonal cells, the OBIJ construction makes possible direct microscope observations of particle deposition on nontransparent substrates. The cell performance was tested by studying kinetics of polystyrene latex particle deposition on mica. Two limiting cell configuration were used in the experiments: (i) the lower position (inverted microscope observation of substrate surface through air) and (ii) the upper position (observation of the substrate surface with adsorbed particles through the suspension layer). The dependence of local mass transfer rate (particle flux) on the position over the substrate surface was studied for various flow Reynolds numbers. It was demonstrated that deposition rate attained maximum at the flow stagnation point whose position was dependent on Re number. Moreover, it was shown that the local flux decreased at much slower rate when moving in the downstream direction, than for previously used impinging-jet cells. Consequently, the area of uniform transport conditions was larger, enabling more precise determination of the limiting particle flux at the stagnation-point. The dependence of the flux on Re number was systematically studied for various ionic strength of the suspension. It was demonstrated, in accordance with previous results for the ordinary impinging-jet, that the flux increased significantly for low ionic strength and high Re number. This phenomenon, referred to as the inverse salt effect, was interpreted in terms of the convective diffusion theory. The governing transport equation originating from this theory was solved numerically, for the region near the stagnation point, using the finite-difference method. These numerical solutions were used for nonlinear fitting of the flow intensity parameter dependence on the Re number. In this way the flow field in the vicinity of the stagnation point was fully characterized. It was concluded that the new cell can be exploited as an effective experimental tool for colloid deposition studies on various substrates.

2.
J Colloid Interface Sci ; 248(1): 67-75, 2002 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16290505

RESUMO

Irreversible adsorption of colloid particles and globular proteins at heterogeneous surfaces was studied theoretically. The substrate surface was created by covering a uniform surface by coupling sites (active centers) of a desired coverage. In contrast to previous studies concerned with disks, in our simulations the centers were modeled by spheres having a size smaller than that of the adsorbing particles. Adsorption was assumed to occur due to short-ranged attractive interactions if the colloid particle contacted the center. The Monte-Carlo-type simulations enabled one to determine the initial flux, adsorption kinetics, jamming coverage, and the structure of the particle monolayer as a function of the site coverage and the particle/site size ratio, denoted by lambda. It was revealed that the initial flux increased significantly with the site coverage theta(s) and the lambda parameter. This behavior was quantitatively interpreted in terms of the scaled particle theory. It also was demonstrated that particle adsorption kinetics and the jamming coverage increased significantly, at fixed site coverage, when the lambda parameter increased. Practically, for alpha=lambda(2)theta(s)>1 the jamming coverage at the heterogeneous surfaces attained the value pertinent to continuous surfaces. The results obtained prove unequivocally that the spherically shaped sites are much more effective in binding particles than the disk-shaped sites considered previously.


Assuntos
Coloides/química , Proteínas/química , Adsorção , Cinética , Método de Monte Carlo , Tamanho da Partícula , Propriedades de Superfície
3.
J Colloid Interface Sci ; 254(2): 283-6, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12702399

RESUMO

Irreversible deposition of polystyrene latex particles (average diameter, 1.5 microm) on various solid/electrolyte interfaces was studied experimentally by using the direct microscope observation method. The substrate surfaces included bare mica (reference interface), gold covered mica (layer thickness of 50 nm), and solid gold plate. The morphology and thickness of the gold layer on mica was determined by atomic force microscopy. Well-defined transport conditions of particles were created by using the new impinging-jet cell. A characteristic feature of the cell was that the suspension stream was directed obliquely to the interface. This unique characteristic was advantageous allowing one for direct, in situ, observation of particle deposition at metals and other nontransparent interfaces. Experiments performed for various flow intensities indicated that the initial deposition kinetics at all interfaces was identical within the error bounds, in accordance with the model based on the convective-diffusion theory. It was concluded that the limiting flux was governed by the bulk transport rather than by the specific surface interactions.

4.
J Colloid Interface Sci ; 241(1): 63-70, 2001 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-11502108

RESUMO

The random sequential adsorption (RSA) approach was used to model irreversible adsorption of colloid particles at surfaces precovered with smaller particles having the same sign of surface charge. Numerical simulations were performed to determine the initial flux of larger particles as a function of surface coverage of smaller particles θ(s) at various size ratios lambda=a(l)/a(s). These numerical results were described by an analytical formula derived from scaled particle theory. Simulations of the long-time adsorption kinetics of larger particles have also been performed. This allowed one to determine upon extrapolation the jamming coverage θ(l)(infinity) as a function of the lambda parameter at fixed smaller particle coverage θ(s). It was found that the jamming coverage θ(l)(infinity) was very sensitive to particle size ratios exceeding 4. Besides yielding θ(l)(infinity), the numerical simulations allowed one to determine the structure of large particle monolayers at the jamming state which deviated significantly from that observed for monodisperse systems. The theoretical predictions suggested that surface heterogeneity, e.g., the presence of smaller sized contaminants or smaller particles invisible under microscope, can be quantitatively characterized by studying larger colloid particle adsorption kinetics and structure of the monolayer. Copyright 2001 Academic Press.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...