Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 15: 248, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26519193

RESUMO

BACKGROUND: The human pathogenic mold Aspergillus fumigatus is able to form a complex biofilm embedded in extracellular matrix. Biofilms confer antimicrobial resistance and it is well known that aspergillosis is often refractory to the conventional antifungal therapy. The treatment of biofilm-related infections poses a significant clinical challenge on a daily basis, promoting the search for new therapeutic agents. Our aim was to exploit the modulation of sphingolipid mediators as new therapeutic target to overcome antifungal resistance in biofilm-related infections. RESULTS: Antifungal susceptibility testing was performed on 20 clinical isolates of Aspergillus fumigatus and one reference strain (A. fumigatus Af293) according the EUCAST protocol. Sessile MICs were assessed on 24-h preformed-biofilm by means of XTT-reduction assay. Myriocin (0.25-64 mg/L), a commercial sphingolipid synthesis inhibitor, was used. The MEC50 value (mg/L) of Myriocin was 8 (range 4-16) for both planktonic and sessile cells. Drug-induced morphological alterations were analyzed by optical and electron microscopy (TEM) on 24h preformed A. fumigatus Af293 biofilms. An evident hyphal damage, resulting in short, stubby, and highly branched hyphae was observed by optical microscopy. At 24h, TEM studies showed important morphological alterations, such as invaginations of the cell membrane, modification in the vacuolar system and presence of multilamellar bodies, in some cases within vacuoles. CONCLUSIONS: The direct antifungal activity, observed on both planktonic and sessile fungi, suggests that inhibition of sphingolipid synthesis could represent a new target to fight biofilm-related A. fumigatus resistance.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/farmacologia , Aspergilose/microbiologia , Aspergillus fumigatus/isolamento & purificação , Aspergillus fumigatus/fisiologia , Farmacorresistência Fúngica/efeitos dos fármacos , Humanos , Hifas/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Viabilidade Microbiana/efeitos dos fármacos
2.
Biochim Biophys Acta ; 1840(1): 586-94, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24141140

RESUMO

BACKGROUND: Sphingolipids take part in immune response and can initiate and/or sustain inflammation. Various inflammatory diseases have been associated with increased ceramide content, and pharmacological reduction of ceramide diminishes inflammation damage in vivo. Inflammation and susceptibility to microbial infection are two elements in a vicious circle. Recently, sphingolipid metabolism inhibitors were used to reduce infection. Cystic fibrosis (CF) is characterized by a hyper-inflammation and an excessive innate immune response, which fails to evolve into adaptive immunity and to eradicate infection. Chronic infections result in lung damage and patient morbidity. Notably, ceramide content in mucosa airways is higher in CF mouse models and in patients than in control mice or healthy subjects. METHODS: The therapeutic potential of myriocin, an inhibitor of the sphingolipid de novo synthesis rate limiting enzyme (Serine Palmitoyl Transferase, SPT),was investigated in CF cells and mice models. RESULTS: We treated CF human respiratory epithelial cells with myriocin, This treatment resulted in reduced basal, as well as TNFα-stimulated, inflammation. In turn, TNFα induced an increase in SPT in these cells, linking de novo synthesis of ceramide to inflammation. Furthermore, myriocin-loaded nanocarrier, injected intratrachea prior to P. aeruginosa challenge, enabled a significant reduction of lung infection and reduced inflammation. CONCLUSIONS: The presented data suggest that de novo ceramide synthesis is constitutively enhanced in CF mucosa and that it can be envisaged as pharmacological target for modulating inflammation and restoring effective innate immunity against acute infection. GENERAL SIGNIFICANCE: Myriocin stands as a powerful immunomodulatory agent for inflammatory and infectious diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Antifúngicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Ácidos Graxos Monoinsaturados/farmacologia , Nanopartículas/química , Esfingolipídeos/química , Animais , Anti-Inflamatórios/administração & dosagem , Antifúngicos/administração & dosagem , Western Blotting , Ceramidas/metabolismo , Cromatografia Líquida , Fibrose Cística/complicações , Fibrose Cística/imunologia , Portadores de Fármacos , Ensaio de Imunoadsorção Enzimática , Ácidos Graxos Monoinsaturados/administração & dosagem , Feminino , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos CFTR , Nanopartículas/administração & dosagem , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/etiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/etiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Eur J Pharm Biopharm ; 79(1): 135-41, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21352914

RESUMO

Intrathecal baclofen administration is the reference treatment for spasticity of spinal or cerebral origin, but the risk of infection or catheter dysfunctions are important limits. To explore the possibility of alternative administration routes, we studied a new preparation comprising solid lipid nanoparticles (SLN) incorporating baclofen (baclofen-SLN). We used SLN because they are able to give a sustained release and to target the CNS. Wistar rats were injected intraperitoneally with baclofen-SLN or baclofen solution (baclofen-sol group) at increasing dosages. At different times up to 4 h, efficacy was tested by the H-reflex and two scales evaluating sedation and motor symptoms due to spinal lesions. Rats were killed and baclofen concentration determined in blood and tissues. Physiological solution or unloaded SLN was used as controls. After baclofen-SLN injection, the effect, consisting in a greater and earlier reduction of the H/M ratio than baclofen-sol group and controls, was statistically significant from a dose of 5 mg/kg and was inversely correlated with dose. Clinical effect of baclofen-SLN on both the behavioral scales was greater than that of baclofen-sol and lasted until 4th hour. Compared with baclofen-sol, baclofen-SLN produced significantly higher drug concentrations in plasma from 2nd hour until 4th hour with a linear decrement and in the brain at all times. In conclusion, our study demonstrated the efficacy of a novel formulation of baclofen, which exploits the advantages of SLN preparations. However, for clinical purposes, high baclofen concentrations in brain tissue and sedation may be unwanted effects, requiring further studies and optimization of dosages.


Assuntos
Baclofeno/farmacocinética , Sistemas de Liberação de Medicamentos , Lipídeos/química , Relaxantes Musculares Centrais/farmacocinética , Nanopartículas/química , Animais , Baclofeno/administração & dosagem , Baclofeno/química , Baclofeno/farmacologia , Comportamento Animal , Portadores de Fármacos , Composição de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Reflexo H/fisiologia , Injeções Intraperitoneais , Lipídeos/administração & dosagem , Masculino , Relaxantes Musculares Centrais/administração & dosagem , Relaxantes Musculares Centrais/química , Relaxantes Musculares Centrais/farmacologia , Espasticidade Muscular/tratamento farmacológico , Espasticidade Muscular/patologia , Nanopartículas/administração & dosagem , Ratos , Ratos Wistar , Distribuição Tecidual
4.
Biomaterials ; 31(25): 6519-29, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20553982

RESUMO

The neurotoxic beta-amyloid peptide (Abeta), formed in anomalous amounts in Alzheimer's disease (AD), is released as monomer and then undergoes aggregation forming oligomers, fibrils and plaques in diseased brains. Abeta aggregates are considered as possible targets for therapy and/or diagnosis of AD. Since nanoparticles (NPs) are promising vehicles for imaging probes and therapeutic agents, we realized and characterized two types of NPs (liposomes and solid lipid nanoparticles, 145 and 76 nm average size, respectively) functionalized to target Abeta(1-42) with high affinity. Preliminary immunostaining studies identified anionic phospholipids [phosphatidic acid (PA) and cardiolipin (CL)] as suitable Abeta(1-42) ligands. PA/CL-functionalized, but not plain, NPs interacted with Abeta(1-42) aggregates as indicated by ultracentrifugation experiments, in which binding reaction occurred in solution, and by Surface Plasmon Resonance (SPR) experiments, in which NPs flowed onto immobilized Abeta(1-42). All these experiments were carried out in buffered saline. SPR studies indicated that, when exposed on NPs surface, PA/CL display very high affinity for Abeta(1-42) fibrils (22-60 nm), likely because of the occurrence of multivalent interactions which markedly decrease the dissociation of PA/CL NPs from Abeta. Noteworthy, PA/CL NPs did not bind to bovine serum albumin. The PA/CL NPs described in this work are endowed with the highest affinity for Abeta so far reported. These characteristics make our NPs a very promising vector for the targeted delivery of potential new diagnostic and therapeutic molecules to be tested in appropriate animal models.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Lipídeos/química , Lipossomos/química , Nanopartículas/química , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/metabolismo , Humanos , Metabolismo dos Lipídeos , Lipossomos/metabolismo , Tamanho da Partícula , Ligação Proteica , Ressonância de Plasmônio de Superfície , Ultracentrifugação
5.
J Pineal Res ; 46(3): 255-61, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19196438

RESUMO

Melatonin is a potent antioxidant molecule with a capacity to protect tissues from damage caused by oxidative stress. It reduces cyclosporine A (CsA)-induced cardiotoxicity; this improvement required melatonin's binding to its membrane receptors. This experimental study examined whether melatonin is a useful tool for counteracting CsA-induced apoptosis in the heart of rats. We investigated melatonin's antiapoptotic efficacy in protecting the heart and tested whether this effect was totally dependent on its binding to membrane receptors or also involved radical scavenging. In some animals, solid lipid nanoparticles (SLN) as a melatonin delivery system were used. In one group of rats, melatonin (1 mg/kg/day i.p.) was given concurrently with CsA (15 mg/kg/day s.c.; CsA-MT) for 21 days. In other animals, melatonin loaded in SLN was injected with CsA (CsA-MTSLN). Oxidative stress in heart tissue was estimated using the evaluation of lipid peroxidation and the expression of the isoform of inducible nitric oxide (iNOS). The antiapoptotic effect of melatonin was evaluated using TUNEL staining and Bcl-2 protein family expression. CsA administration produced morphological and biochemical changes in the heart of rats, while melatonin reversed the changes. In particular, since the antiapoptotic melatonin's efficacy is mainly observed when it is loaded in SLN, we suggest that MT1/MT2 pathway is not sufficient for apoptosis antagonism and the additional intracellular effects may be required. Finally, we show that, (i) melatonin significantly reduces CsA cardiotoxicity acting also on apoptotic processes, and (ii) the reduction in CsA-induced cardiotoxicity is mediated mainly by its antioxidant effect.


Assuntos
Ciclosporina/toxicidade , Cardiopatias/induzido quimicamente , Cardiopatias/prevenção & controle , Imunossupressores/toxicidade , Melatonina/administração & dosagem , Nanopartículas/administração & dosagem , Análise de Variância , Animais , Apoptose/efeitos dos fármacos , Portadores de Fármacos , Marcação In Situ das Extremidades Cortadas , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/administração & dosagem , Lipídeos/uso terapêutico , Masculino , Malondialdeído/metabolismo , Melatonina/metabolismo , Melatonina/uso terapêutico , Miocárdio/ultraestrutura , Nanopartículas/uso terapêutico , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...