Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Traffic Inj Prev ; 22(8): 616-622, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34477471

RESUMO

OBJECTIVE: Cerebral contusions (CC) represent a frequent lesion in traumatic brain injury, with potential morbidity from mass effect and tissue loss. Better understanding of the mechanical etiology will help to improve head protection. The goal of this study is to investigate the threshold for mechanical impact parameters to induce CC in an in vivo porcine controlled cortical impact model. METHODS: Thirty-four adult male pigs underwent craniotomy and controlled cortical impact with a hemispherical tip on intact dura under general anesthesia. Peak impact depth varied between 1.1 and 12.6 mm, and impact velocity between 0.4 and 2.2 m/s while the dwell time was kept at 200 ms. Two days following impact, the animals underwent magnetic resonance (MR) imaging of the brain, and were subsequently sacrificed for brain extraction. CC damage was investigated by magnetic resonance imaging and histology. RESULTS: All animals recovered from the impact without overt neurological deficit. Provoked injuries were histologically confirmed to be CC. Decreasing probability of cortical damage and white matter edema volume was observed with decreasing impact depth and velocity. No CC could be demonstrated below a product of impact depth and velocity of 0.8 mm*m/s, whereas the probability for CC was one third below 15 mm*m/s. The threshold for CC development as estimated from the current series of experiments, was situated at an impact depth of 2.0 mm and impact velocity of 0.4 m/s. CONCLUSION: Mechanical thresholds for CC development could be explored in the current porcine controlled cortical impact model. Findings will be used to further refine a cerebral contusion porcine model with volumetric histology data in light of future finite element cerebral contusion validation studies.


Assuntos
Contusão Encefálica , Edema Encefálico , Lesões Encefálicas Traumáticas , Acidentes de Trânsito , Animais , Modelos Animais de Doenças , Cabeça , Masculino , Suínos
2.
J Biomech ; 92: 6-10, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31201011

RESUMO

Acute subdural hematoma (ASDH) is one of the most frequent traumatic brain injuries (TBIs) with high mortality rate. Bridging vein (BV) ruptures is a major cause of ASDH. The KTH finite element head model includes bridging veins to predict acute subdural hematoma due to BV rupture. In this model, BVs were positioned according to Oka et al. (1985). The aim of the current study is to investigate whether the location and entry angles of these BVs could be modelled using data from a greater statistical sample, and what the impact of this improvement would be on the model's predictive capability of BV rupture. From the CT angiogram data of 78 patients, the relative position of the bridging veins and their entry angles along the superior sagittal sinus was determined. The bridging veins were repositioned in the model accordingly. The performance of the model, w.r.t. BV rupture prediction potential was tested on simulations of full body cadaver head impact experiments. The experiments were simulated on the original version of the model and on three other versions which had updated BV positions according to mean, maximum and minimum entry angles. Even though the successful prediction rate between the models stayed the same, the location of the rupture site significantly improved for the model with the mean entry angles. Moreover, the models with maximum and minimum entry angles give an insight of how BV biovariability can influence ASDH. In order to further improve the successful prediction rate, more biofidelic data are needed both with respect to bridging vein material properties and geometry. Furthermore, more experimental data are needed in order to investigate the behaviour of FE head models in depth.


Assuntos
Hematoma Subdural Agudo/complicações , Ruptura/complicações , Veias/lesões , Fenômenos Biomecânicos , Angiografia por Tomografia Computadorizada , Feminino , Hematoma Subdural Agudo/diagnóstico , Humanos , Masculino , Prognóstico , Veias/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...