Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0290080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37582092

RESUMO

There is an increasing need to discover effective methods for treating municipal wastewater and addressing the threat of multidrug-resistant (MDR) strains of bacteria spreading into the environment and drinking water. Photodynamic inactivation (PDI) that combines a photosensitiser and light in the presence of oxygen to generate singlet oxygen and other reactive species, which in turn react with a range of biomolecules, including the oxidation of bacterial genetic material, may be a way to stop the spread of antibiotic-resistant genes. The effect of 5,10,15,20-(pyridinium-3-yl)porphyrin tetrachloride (TMPyP3) without light, and after activation with violet-blue light (VBL) (394 nm; 20 mW/cm2), on MDR strains of Pseudomonas aeruginosa, Klebsiella pneumoniae and K. pneumoniae OXA-48 in tap water and municipal wastewater was investigated. High toxicity (~2 µM) of TMPyP3 was shown in the dark on both strains of K. pneumoniae in tap water, while on P. aeruginosa toxicity in the dark was low (50 µM) and the PDI effect was significant (1.562 µM). However, in wastewater, the toxicity of TMPyP3 without photoactivation was much lower (12.5-100 µM), and the PDI effect was significant for all three bacterial strains, already after 10 min of irradiation with VBL (1.562-6.25 µM). In the same concentrations, or even lower, an anti-adhesion effect was shown, suggesting the possibility of application in biofilm control. By studying the kinetics of photoinactivation, it was found that with 1,562 µM of TMPyP3 it is possible to achieve the complete destruction of all three bacteria after 60 min of irradiation with VBL. This study confirmed the importance of studying the impact of water constituents on the properties and PDI effect of the applied photosensitiser, as well as checking the sensitivity of targeted bacteria to light of a certain wavelength, in conditions as close as possible to those in the intended application, to adjust all parameters and perfect the method.


Assuntos
Porfirinas , Porfirinas/farmacologia , Pseudomonas aeruginosa , Águas Residuárias , Klebsiella pneumoniae , Antibacterianos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Bactérias , Água/farmacologia
2.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37111370

RESUMO

Photodynamic therapy (PDT) is a special form of phototherapy in which oxygen is needed, in addition to light and a drug called a photosensitiser (PS), to create cytotoxic species that can destroy cancer cells and various pathogens. PDT is often used in combination with other antitumor and antimicrobial therapies to sensitise cells to other agents, minimise the risk of resistance and improve overall outcomes. Furthermore, the aim of combining two photosensitising agents in PDT is to overcome the shortcomings of the monotherapeutic approach and the limitations of individual agents, as well as to achieve synergistic or additive effects, which allows the administration of PSs in lower concentrations, consequently reducing dark toxicity and preventing skin photosensitivity. The most common strategies in anticancer PDT use two PSs to combine the targeting of different organelles and cell-death mechanisms and, in addition to cancer cells, simultaneously target tumour vasculature and induce immune responses. The use of PDT with upconversion nanoparticles is a promising approach to the treatment of deep tissues and the goal of using two PSs is to improve drug loading and singlet oxygen production. In antimicrobial PDT, two PSs are often combined to generate various reactive oxygen species through both Type I and Type II processes.

3.
Curr Med Chem ; 29(18): 3261-3299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35593328

RESUMO

BACKGROUND: Photodynamic therapy (PDT), in comparison to other skin cancers, is still far less effective for melanoma, due to the strong absorbance and the role of melanin in cytoprotection. The tumour microenvironment (TME) has a significant role in tumour progression, and the hypoxic TME is one of the main reasons for melanoma progression to metastasis and its resistance to PDT. Hypoxia is also a feature of solid tumours in the head and neck region that indicates negative prognosis. OBJECTIVE: The aim of this study was to individuate and describe systematically the main strategies in targeting the TME, especially hypoxia, in PDT against melanoma and head and neck cancers (HNC), and assess the current success in their application. METHODS: PubMed was used for searching, in MEDLINE and other databases, for the most recent publications on PDT against melanoma and HNC in combination with the TME targeting and hypoxia. RESULTS: In PDT for melanoma and HNC, it is very important to control hypoxia levels, and amongst the different approaches, oxygen self-supply systems are often applied. Vascular targeting is promising, but to improve it, optimal drug-light interval, and formulation to increase the accumulation of the photosensitiser in the tumour vasculature, have to be established. On the other side, the use of angiogenesis inhibitors, such as those interfering with VEGF signalling, is somewhat less successful than expected and needs to be further investigated. CONCLUSION: The combination of PDT with immunotherapy by using multifunctional nanoparticles continues to develop and seems to be the most promising for achieving a complete and lasting antitumour effect.


Assuntos
Neoplasias de Cabeça e Pescoço , Melanoma , Fotoquimioterapia , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Hipóxia , Melanoma/tratamento farmacológico , Melanoma/patologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Microambiente Tumoral
4.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445798

RESUMO

The bacterium Legionella pneumophila is still one of the probable causes of waterborne diseases, causing serious respiratory illnesses. In the aquatic systems, L. pneumophila exists inside free-living amoebae or can form biofilms. Currently developed disinfection methods are not sufficient for complete eradication of L. pneumophila biofilms in water systems of interest. Photodynamic inactivation (PDI) is a method that results in an antimicrobial effect by using a combination of light and a photosensitizer (PS). In this work, the effect of PDI in waters of natural origin and of different hardness, as a treatment against L. pneumophila biofilm, was investigated. Three cationic tripyridylporphyrins, which were previously described as efficient agents against L. pneumophila alone, were used as PSs. We studied how differences in water hardness affect the PSs' stability, the production of singlet oxygen, and the PDI activity on L. pneumophila adhesion and biofilm formation and in biofilm destruction. Amphiphilic porphyrin showed a stronger tendency for aggregation in hard and soft water, but its production of singlet oxygen was higher in comparison to tri- and tetracationic hydrophilic porphyrins that were stable in all water samples. All three studied porphyrins were shown to be effective as PDI agents against the adhesion of the L. pneumophila to polystyrene, against biofilm formation, and in the destruction of the formed biofilm, in their micromolar concentrations. However, a higher number of dissolved ions, i.e., water hardness, generally reduced somewhat the PDI activity of all the porphyrins at all tested biofilm growth stages.


Assuntos
Biofilmes/efeitos dos fármacos , Cátions/farmacologia , Dureza/efeitos dos fármacos , Legionella pneumophila/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Água/química , Amoeba/microbiologia , Oxigênio Singlete/farmacologia , Microbiologia da Água
5.
Int J Mol Sci ; 21(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731616

RESUMO

Legionella pneumophila is an environmental bacterium, an opportunistic premise plumbing pathogen that causes the Legionnaires' disease. L. pneumophila presents a serious health hazard in building water systems, due to its high resistance to standard water disinfection methods. Our aim was to study the use of photodynamic inactivation (PDI) against Legionella. We investigated and compared the photobactericidal potential of five cationic dyes. We tested toluidine blue (TBO) and methylene blue (MB), and three 3-N-methylpyridylporphyrins, one tetra-cationic and two tri-cationic, one with a short (CH3) and the other with a long (C17H35) alkyl chain, against L. pneumophila in tap water and after irradiation with violet light. All tested dyes demonstrated a certain dark toxicity against L. pneumophila; porphyrins with lower minimal effective concentration (MEC) values than TBO and MB. Nanomolar MEC values, significantly lower than with TBO and MB, were obtained with all three porphyrins in PDI experiments, with amphiphilic porphyrin demonstrating the highest PDI activity. All tested dyes showed increasing PDI with longer irradiation (0-108 J/cm2), especially the two hydrophilic porphyrins. All three porphyrins caused significant changes in cell membrane permeability after irradiation and L. pneumophila, co-cultivated with Acanthamoeba castellanii after treatment with all three porphyrins and irradiation, did not recover in amoeba. We believe our results indicate the considerable potential of cationic porphyrins as effective anti-Legionella agents.


Assuntos
Antibacterianos , Legionella pneumophila/crescimento & desenvolvimento , Doença dos Legionários/tratamento farmacológico , Fotoquimioterapia , Porfirinas , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Doença dos Legionários/metabolismo , Porfirinas/síntese química , Porfirinas/química , Porfirinas/farmacologia
6.
ChemMedChem ; 13(4): 360-372, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29381258

RESUMO

A series of N-methylated and N-oxidised tripyridyl porphyrins were synthesised, characterised, and their PDT activity was studied with six cell lines. All the tested porphyrins with a long alkyl chain, except one, were more efficient for PDT than an N-methylated hydrophilic porphyrin and N-oxidised porphyrin without the long alkyl chain. Generally, N-methylated tripyridyl porphyrins were more active than those N-oxidised, but IC50 values for phototoxicity of two N-oxides, named TOPyP3-C17 H33 O and TOPyP3-C17 H35 , were still in the nanomolar concentration range for most of the tested cell lines. However, TOPyP3-C17 H35 did not show phototoxicity on human foreskin fibroblast cells. Two methylated amphiphilic porphyrins, named TMPyP3-C17 H33 and TMPyP4-C17 H35, showed significant dark toxicity, whereas none of the oxidopyridyl porphyrins were toxic without light activation. The selected photosensitisers were shown to be apoptosis inducers, and had inhibitory effects on the clonogenic growth of HCT116 and HeLa cells. All three N-methylated amphiphilic porphyrins significantly reduced the migratory potential of HCT116 cells. Porphyrins TMPyP3-C17 H35 and TOPyP3-C17 H35 reduced the activity of acid ceramidase, whereas TOPyP3-C17 H33 O had a significant inhibitory effect on sphingosine kinase 1 activity in HeLa cells. Compounds with this dual activity were shown to be the most promising photosensitisers, with potential to treat invasive cancers.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fármacos Fotossensibilizantes/química , Porfirinas/química , Esfingolipídeos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HeLa , Humanos , Luz , Metilação , Nitrogênio/química , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...