Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335515

RESUMO

Rubber and rubber-metal vibration isolators are widely used vibration isolation systems in marine applications. For naval application, shock absorber mounting systems must fulfil two functions. The first one supports the suspended mass in the absence of waving or detonation while providing isolation from vibrations and shock impact. In the second case, during the machine operation, it reduces the force of movement to an acceptable value. Moreover, it returns the insulated mass to the position output without plastic deformation or residual buckling after removing shock stresses or harmonic vibrations. The environment in which marine vibration isolators are to be used strongly influences the selection of a shock absorber. The main environmental problem is the temperature range in marine power plants, which ranges from 20 °C to 55 °C. Temperature fluctuations may cause changes in the physical properties of typical vibration/shock insulators. Both rubbers and elastomers used for shock absorbers tend to stiffen, gain low-temperature damping, and soften and lose damping at elevated temperatures. Factors such as moisture, ozone and changes in atmospheric pressure are usually ignored in shipbuilding. The main environmental factors influencing the ageing of insulators are liquid saturated hydrocarbons, i.e., oils, fuels, coolants, etc., which may come into contact with the surface of the insulators. This work presents the results of the research carried out to determine the effect of overload and the impact of petroleum products on the materials of metal-rubber shock absorbers made of three different rubbers and one polyurethane mixture. For each of the materials, shock absorbers with three different degrees of hardness were tested.

2.
Materials (Basel) ; 14(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34947217

RESUMO

The use of renewable resources for powering self-ignition engines in European Union countries involves a high demand for renewable energy which is not accompanied by the development of its production infrastructure. The application of biofuel in vehicle powering is supposed to provide reductions in greenhouse gas emissions and an increase in the share of renewable energy resources in the total energy consumption. The study includes the analyses of power unit exhaust components, such as oxygen, carbon monoxide, nitric oxides, carbonizers, carbon dioxide and a quantity of exhaust particles contained in exhaust gases. Tests using an exhaust gas analyzer and a vapor analyzer were conducted. Three high-pressure engines, characterized by direct fuel injection, were tested. The vehicle computer software adjustments included increasing the fuel dose and the air load. Mixtures of diesel oil and fatty acid methyl esters were used in the tests. Based on the results, a statistical analysis was performed and an assessment model was developed to understand the functioning of the research objects fueled with these mixtures, with simultaneous software changes in the vehicle computers. On the basis of the conducted analysis, it was found that only 30% of fatty acid methyl ester additives to diesel oil reduced the performance parameters of the drive units.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...