Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5287, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002255

RESUMO

Plasma-surface interactions during AlN thin film sputter deposition could be studied by means of reactive molecular dynamics (RMD) methods. This requires an interaction potential that describes all species as well as wall interactions (e.g., particle emission, damage formation) appropriately. However, previous works focused on the establishment of AlN bulk potentials. Although for the third-generation charge-optimized many-body (COMB3) potential at least a single reference surface was taken into account, surface interactions are subject to limited reliability only. The demand for a revised COMB3 AlN potential is met in two steps: First, the Ziegler-Biersack-Littmark potential is tapered and the variable charge model QTE[Formula: see text] is implemented to account for high-energy collisions and distant charge transport, respectively. Second, the underlying parameterization is reworked by applying a self-adaptive evolution strategy implemented in the GARFfield software. Four wurtzite, three zinc blende and three rock salt surfaces are considered. An example study on the ion bombardment induced particle emission and point defect formation reveals that the revised COMB3 AlN potential is appropriate for the accurate investigation of plasma-surface interactions by means of RMD simulations.

2.
Sci Rep ; 12(1): 20490, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443309

RESUMO

With the advent of the Internet of Things, nanoelectronic devices or memristors have been the subject of significant interest for use as new hardware security primitives. Among the several available memristors, BiFe[Formula: see text] (BFO)-based electroforming-free memristors have attracted considerable attention due to their excellent properties, such as long retention time, self-rectification, intrinsic stochasticity, and fast switching. They have been actively investigated for use in physical unclonable function (PUF) key storage modules, artificial synapses in neural networks, nonvolatile resistive switches, and reconfigurable logic applications. In this work, we present a physics-inspired 1D compact model of a BFO memristor to understand its implementation for such applications (mainly PUFs) and perform circuit simulations. The resistive switching based on electric field-driven vacancy migration and intrinsic stochastic behaviour of the BFO memristor are modelled using the cloud-in-a-cell scheme. The experimental current-voltage characteristics of the BFO memristor are successfully reproduced. The response of the BFO memristor to changes in electrical properties, environmental properties (such as temperature) and stress are analyzed and consistant with experimental results.

3.
J Chem Theory Comput ; 17(11): 6691-6704, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34672567

RESUMO

Variable charge models (e.g., electronegativity equalization method (EEM), charge equilibration (QEq), electrostatic plus (ES+)) used in reactive molecular dynamics simulations often inherently impose a global charge transfer between atoms (approximating each system as an ideal metal). Consequently, most surface processes (e.g., adsorption, desorption, deposition, sputtering) are affected, potentially causing dubious dynamics. This issue has been addressed by certain split charge variants (i.e., split charge equilibration (SQE), redoxSQE) through a distance-dependent bond hardness, by the atomic charge ACKS2 and QTPIE models, which are based on the Kohn-Sham density functional theory, as well as by an electronegativity screening extension to the QEq model (approximating each system as an ideal insulator). In a brief review of the QEq and the QTPIE model, their applicability for studying surface interactions is assessed in this work. Following this evaluation, a revised generalization of the QEq and QTPIE models is proposed and formulated, called the charge-transfer equilibration model or in short the QTE model. This method is based on the equilibration of charge-transfer variables, which locally constrain the split charge transfer per unit time (i.e., due to overlapping orbitals) without any kind of bond hardness specification. Furthermore, a formalism relying solely on atomic charges is obtained by a respective transformation, employing an extended Lagrangian method. We moreover propose a mirror boundary condition and its implementation to accelerate surface investigations. The models proposed in this work facilitate reactive molecular dynamics simulations, which describe various materials and surface phenomena appropriately.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34776750

RESUMO

Single frequency, geometrically symmetric Radio-Frequency (rf) driven atmospheric pressure plasmas exhibit temporally and spatially symmetric patterns of electron heating, and consequently, charged particle densities and fluxes. Using a combination of phase-resolved optical emission spectroscopy and kinetic plasma simulations, we demonstrate that tailored voltage waveforms consisting of multiple rf harmonics induce targeted disruption of these symmetries. This confines the electron heating to small regions of time and space and enables the electron energy distribution function to be tailored.

5.
ACS Appl Mater Interfaces ; 10(17): 14857-14868, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29601180

RESUMO

We report on the resistive switching in TiN/Ti/HfO2/TiN memristive devices. A resistive switching model for the device is proposed, taking into account important experimental and theoretical findings. The proposed switching model is validated using 2D and 3D kinetic Monte Carlo simulation models. The models are consistently coupled to the electric field and different current transport mechanisms such as direct tunneling, trap-assisted tunneling, ohmic transport, and transport through a quantum point contact have been considered. We find that the numerical results are in excellent agreement with experimentally obtained data. Important device parameters, which are difficult or impossible to measure in experiments, are calculated. This includes the shape of the conductive filament, width of filament constriction, current density, and temperature distribution. To obtain insights in the operation of the device, consecutive cycles have been simulated. Furthermore, the switching kinetics for the forming and set process for different applied voltages is investigated. Finally, the influence of an annealing process on the filament growth, especially on the filament growth direction, is discussed.

6.
Sci Rep ; 6: 35686, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27762294

RESUMO

In this work we report on the role of ion transport for the dynamic behavior of a double barrier quantum mechanical Al/Al2O3/NbxOy/Au memristive device based on numerical simulations in conjunction with experimental measurements. The device consists of an ultra-thin NbxOy solid state electrolyte between an Al2O3 tunnel barrier and a semiconductor metal interface at an Au electrode. It is shown that the device provides a number of interesting features such as an intrinsic current compliance, a relatively long retention time, and no need for an initialization step. Therefore, it is particularly attractive for applications in highly dense random access memories or neuromorphic mixed signal circuits. However, the underlying physical mechanisms of the resistive switching are still not completely understood yet. To investigate the interplay between the current transport mechanisms and the inner atomistic device structure a lumped element circuit model is consistently coupled with 3D kinetic Monte Carlo model for the ion transport. The simulation results indicate that the drift of charged point defects within the NbxOy is the key factor for the resistive switching behavior. It is shown in detail that the diffusion of oxygen modifies the local electronic interface states resulting in a change of the interface properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...