Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2007): 20230420, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752837

RESUMO

Adaptive avian radiations associated with the diversification of bird beaks into a multitude of forms enabling different functions are exemplified by Darwin's finches and Hawaiian honeycreepers. To elucidate the nature of these radiations, we quantified beak shape and skull shape using a variety of geometric measures that allowed us to collapse the variability of beak shape into a minimal set of geometric parameters. Furthermore, we find that just two measures of beak shape-the ratio of the width to length and the normalized sharpening rate (increase in the transverse beak curvature near the tip relative to that at the base of the beak)-are strongly correlated with diet. Finally, by considering how transverse sections to the beak centreline evolve with distance from the tip, we show that a simple geometry-driven growth law termed 'modified mean curvature flow' captures the beak shapes of Darwin's finches and Hawaiian honeycreepers. A surprising consequence of the simple growth law is that beak shapes that are not allowed based on the developmental programme of the beak are also not observed in nature, suggesting a link between evolutionary morphology and development in terms of growth-driven developmental constraints.


Assuntos
Bico , Tentilhões , Animais , Morfogênese , Evolução Biológica , Cabeça
2.
Nature ; 583(7816): 411-414, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32555453

RESUMO

Egg size and structure reflect important constraints on the reproductive and life-history characteristics of vertebrates1. More than two-thirds of all extant amniotes lay eggs2. During the Mesozoic era (around 250 million to 65 million years ago), body sizes reached extremes; nevertheless, the largest known egg belongs to the only recently extinct elephant bird3, which was roughly 66 million years younger than the last nonavian dinosaurs and giant marine reptiles. Here we report a new type of egg discovered in nearshore marine deposits from the Late Cretaceous period (roughly 68 million years ago) of Antarctica. It exceeds all nonavian dinosaur eggs in volume and differs from them in structure. Although the elephant bird egg is slightly larger, its eggshell is roughly five times thicker and shows a substantial prismatic layer and complex pore structure4. By contrast, the new fossil, visibly collapsed and folded, presents a thin eggshell with a layered structure that lacks a prismatic layer and distinct pores, and is similar to that of most extant lizards and snakes (Lepidosauria)5. The identity of the animal that laid the egg is unknown, but these preserved morphologies are consistent with the skeletal remains of mosasaurs (large marine lepidosaurs) found nearby. They are not consistent with described morphologies of dinosaur eggs of a similar size class. Phylogenetic analyses of traits for 259 lepidosaur species plus outgroups suggest that the egg belonged to an individual that was at least 7 metres long, hypothesized to be a giant marine reptile, all clades of which have previously been proposed to show live birth6. Such a large egg with a relatively thin eggshell may reflect derived constraints associated with body shape, reproductive investment linked with gigantism, and lepidosaurian viviparity, in which a 'vestigial' egg is laid and hatches immediately7.


Assuntos
Dinossauros , Casca de Ovo/anatomia & histologia , Casca de Ovo/química , Fósseis , Dureza , Animais , Evolução Biológica , Dinossauros/classificação
3.
PeerJ ; 8: e8268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31942255

RESUMO

The middle-late Eocene of Antarctica was characterized by dramatic change as the continent became isolated from the other southern landmasses and the Antarctic Circumpolar Current formed. These events were crucial to the formation of the permanent Antarctic ice cap, affecting both regional and global climate change. Our best insight into how life in the high latitudes responded to this climatic shift is provided by the fossil record from Seymour Island, near the eastern coast of the Antarctic Peninsula. While extensive collections have been made from the La Meseta and Submeseta formations of this island, few avian taxa other than penguins have been described and mammalian postcranial remains have been scarce. Here, we report new fossils from Seymour Island collected by the Antarctic Peninsula Paleontology Project. These include a mammalian metapodial referred to Xenarthra and avian material including a partial tarsometatarsus referred to Gruiformes (cranes, rails, and allies). Penguin fossils (Sphenisciformes) continue to be most abundant in new collections from these deposits. We report several penguin remains including a large spear-like mandible preserving the symphysis, a nearly complete tarsometatarsus with similarities to the large penguin clade Palaeeudyptes but possibly representing a new species, and two small partial tarsometatarsi belonging to the genus Delphinornis. These findings expand our view of Eocene vertebrate faunas on Antarctica. Specifically, the new remains referred to Gruiformes and Xenarthra provide support for previously proposed, but contentious, earliest occurrence records of these clades on the continent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...