Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Adv Manuf Technol ; 117(7-8): 2059-2071, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967372

RESUMO

The production of rapid tools for plastic molding, sheet metal forming, and blanking has always been a critical and important goal for applied research, and a very large number of alternative methods have been proposed over the decades for their production. Among these methods, the use of extrusion-based additive manufacturing (EAM), such as fused filament fabrication (FFF) or similar technologies, has not been frequently considered and needs to be explored extensively. EAM is generally considered a low-cost, low-quality, low-performance class of AM and not suited to produce real functional parts, but only for aesthetical prototypes. However, the capabilities of EAM technologies have greatly evolved and now it is possible to extrude a wide range of materials such as polymeric materials including both the low strength polymeric materials (such as nylon or PLA) and the high strength polymeric materials (such as PEI and PEEK), metals (such as tool steel), and even ceramics (such as zirconia). Starting from an extensive literature review, the purpose of the present paper is to further demonstrate the potential applicability and versatility of EAM as a rapid tool manufacturing technology for different applications in shearing, bending, deep drawing, and injection molding.

2.
Materials (Basel) ; 8(7): 4061-4079, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28793425

RESUMO

The favorable energy-absorption properties of metal foams have been frequently proposed for damping or anti-crash applications. The aim of this paper is to investigate the endurance of these properties for composite structures, made by a metal or a hybrid metal-polymeric foam used as the core filling of a tubular metal case. The results of experimental tests are shown, run with two types of structures: 1) square steel tubes filled with aluminum or with hybrid aluminum-polymer foams; 2) round titanium tubes filled with aluminum foams. The paper shows that the damping properties of a foam-filled tube change (improve) with the number of cycles, while all other dynamic properties are nearly constant. This result is very important for several potential applications where damping is crucial, e.g., for machine tools.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...