Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 128(5): 599-605, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31151898

RESUMO

Most industrial fermentation processes are operated in fed-batch mode to overcome catabolite repression, undesired by-product formation and oxygen limitation. To maintain comparable process conditions during screening of optimal production strains, the implementation of a fed-batch mode at small scale is crucial. In this study, three different protease producing Bacillus species, Bacillus aeolius, B. licheniformis and B. pumilus, were cultivated using the previously described membrane-based fed-batch shake flasks. Under carbon-limited conditions, catabolite repression was avoided, so that proteases were produced in all strains. Protease yields of B. aeolius and B. licheniformis increased 1.5-fold relative to batch cultivations. To validate process scalability between shake flasks and stirred tank reactors, membrane-based fed-batch shake flask cultivations were transferred to laboratory-scale stirred tank reactors with equal feeding rates. Despite inevitable differences between the scales such as pH control, feed supply and feed start, comparable results were achieved. Oxygen transfer rates of B. licheniformis and B. pumilus measured with the respiration activity monitoring system (RAMOS) in shake flasks and in stirred tank reactor with an off-gas analyzer were almost identical in both cultivation systems. The protease activities referring to the total consumed glucose were also mostly comparable. A slight decrease from shake flask to stirred tank reactor could be observed, which is presumably due to differences in pH control. This study successfully demonstrates the transferability of membrane-based fed-batch shake flask cultivations to laboratory-scale stirred tank reactors.


Assuntos
Bacillus/enzimologia , Endopeptidases/metabolismo , Reatores Biológicos , Fermentação , Glucose/metabolismo , Oxigênio/metabolismo
2.
Microb Cell Fact ; 17(1): 106, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986716

RESUMO

BACKGROUND: Culture media containing complex compounds like yeast extract or peptone show numerous disadvantages. The chemical composition of the complex compounds is prone to significant variations from batch to batch and quality control is difficult. Therefore, the use of chemically defined media receives more and more attention in commercial fermentations. This concept results in better reproducibility, it simplifies downstream processing of secreted products and enable rapid scale-up. Culturing bacteria with unknown auxotrophies in chemically defined media is challenging and often not possible without an extensive trial-and-error approach. In this study, a respiration activity monitoring system for shake flasks and its recent version for microtiter plates were used to clarify unknown auxotrophic deficiencies in the model organism Bacillus pumilus DSM 18097. RESULTS: Bacillus pumilus DSM 18097 was unable to grow in a mineral medium without the addition of complex compounds. Therefore, a rich chemically defined minimal medium was tested containing basically all vitamins, amino acids and nucleobases, which are essential ingredients of complex components. The strain was successfully cultivated in this medium. By monitoring of the respiration activity, nutrients were supplemented to and omitted from the rich chemically defined medium in a rational way, thus enabling a systematic and fast determination of the auxotrophic deficiencies. Experiments have shown that the investigated strain requires amino acids, especially cysteine or histidine and the vitamin biotin for growth. CONCLUSIONS: The introduced method allows an efficient and rapid identification of unknown auxotrophic deficiencies and can be used to develop a simple chemically defined tailor-made medium. B. pumilus DSM 18097 was chosen as a model organism to demonstrate the method. However, the method is generally suitable for a wide range of microorganisms. By combining a systematic combinatorial approach based on monitoring the respiration activity with cultivation in microtiter plates, high throughput experiments with high information content can be conducted. This approach facilitates media development, strain characterization and cultivation of fastidious microorganisms in chemically defined minimal media while simultaneously reducing the experimental effort.


Assuntos
Aminoácidos/química , Bacillus pumilus/metabolismo , Meios de Cultura/química , Bacillus pumilus/crescimento & desenvolvimento , Técnicas Bacteriológicas , Técnicas de Cultura Celular por Lotes , Fermentação , Reprodutibilidade dos Testes
3.
Appl Microbiol Biotechnol ; 99(12): 5237-46, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25947243

RESUMO

Esterases hydrolyze ester bonds with an often high stereoselectivity as well as regioselectivity and are therefore industrially employed in the synthesis of pharmaceuticals, in food processing, and in laundry detergents. Continuous screening systems based on p-nitrophenyl- (e.g., p-nitrophenyl acetate) or umbelliferyl-esters are commonly used in directed esterase evolution campaigns. Ongoing challenges in directed esterase evolution are screening formats which offer a broad substrate spectrum, especially for complex aromatic substrates. In this report, a novel continuous high throughput screening system for indirect monitoring of esterolytic activity was developed and validated by detection of phenols employing phenyl benzoate as substrate and p-nitrobenzyl esterase (pNBEBL from Bacillus licheniformis) as catalyst. The released phenol directly reacts with 4-aminoantipyrine yielding the red compound 1,5-dimethyl-4-(4-oxo-cyclohexa-2,5-dienylidenamino)-2-phenyl-1,2-dihydro-pyrazol-3-one. In this continuous B. licheniformis esterase activity detection system (cBLE-4AAP), the product formation is followed through an increase in absorbance at 509 nm. The cBLE-4AAP screening system was optimized in 96-well microtiter plate format in respect to standard deviation (5 %), linear detection range (15 to 250 µM), lower detection limit (15 µM), and pH (7.4 to 10.4). The cBLE-4AAP screening system was validated by screening a random epPCR pNBEBL mutagenesis library (2000 clones) for improved esterase activity at elevated temperatures. Finally, the variant T3 (Ser378Pro) was identified which nearly retains its specific activity at room temperature (WT 1036 U/mg and T3 929 U/mg) and shows compared to WT a 4.7-fold improved residual activity after thermal treatment (30 min incubation at 69.4 °C; WT 170 U/mg to T3 804 U/mg).


Assuntos
Ampirona/metabolismo , Bacillus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Esterases/genética , Esterases/metabolismo , Bacillus/química , Bacillus/genética , Proteínas de Bactérias/química , Evolução Molecular Direcionada , Estabilidade Enzimática , Esterases/química , Cinética
4.
Appl Microbiol Biotechnol ; 96(5): 1243-52, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22290646

RESUMO

Glycerol as a by-product of biodiesel production is an attractive precursor for producing d-glyceric acid. Here, we demonstrate the successful production of d-glyceric acid based on glycerol via glyceraldehyde in a two-step enzyme reaction with the FAD-dependent alditol oxidase from Streptomyces coelicolor A3(2). The hydrogen peroxide generated in the reaction can be used in detergent, food, and paper industry. In order to apply the alditol oxidase in industry, the enzyme was subjected to protein engineering. Different strategies were used to enhance the substrate specificity towards glycerol. Initial attempts based on rational protein design in the active site region were found unsuccessful to increase activity. However, through directed evolution, an alditol oxidase double mutant (V125M/A244T) with 1.5-fold improved activity for glycerol was found by screening 8,000 clones. Further improvement of activity was achieved by combinatorial experiments, which led to a quadruple mutant (V125M/A244T/V133M/G399R) with 2.4-fold higher specific activity towards glycerol compared to the wild-type enzyme. Through studying the effects of mutations created, we were able to understand the importance of certain amino acids in the structure of alditol oxidase, not only for conferring enzymatic structural stability but also with respect to their influence on oxidative activity.


Assuntos
Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Evolução Molecular Direcionada , Ácidos Glicéricos/metabolismo , Streptomyces coelicolor/enzimologia , Streptomyces coelicolor/metabolismo , Substituição de Aminoácidos , Peróxido de Hidrogênio/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oxirredução , Engenharia de Proteínas/métodos , Especificidade por Substrato
5.
Appl Microbiol Biotechnol ; 87(5): 1743-52, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20467737

RESUMO

In order to engineer the choline oxidase from Arthrobacter nicotianae (An_CodA) for the potential application as biological bleach in detergents, the specific activity of the enzyme toward the synthetic substrate tris-(2-hydroxyethyl)-methylammonium methylsulfate (MTEA) was improved by methods of directed evolution and rational design. The best mutants (up to 520% wt-activity with MTEA) revealed mutations in the FAD- (A21V, G62D, I69V) and substrate-binding site (S348L, V349L, F351Y). In a separate screening of a library comprising of randomly mutagenised An_CodA, with the natural substrate choline, four mutations were identified, which were further combined in one clone. The constructed clone showed improved activity towards both substrates, MTEA and choline. Mapping these mutation sites onto the structural model of An_CodA revealed that Phe351 is positioned right in the active site of An_CodA and very likely interacts with the bound substrate. Ala21 is part of an alpha-helix which interacts with the diphosphate moiety of the flavin cofactor and might influence the activity and specificity of the enzyme.


Assuntos
Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Arthrobacter/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corantes/metabolismo , Engenharia de Proteínas , Substituição de Aminoácidos , Sítios de Ligação , Evolução Molecular Direcionada , Metilaminas/metabolismo , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Ésteres do Ácido Sulfúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...