Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 103(4-1): 042303, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005873

RESUMO

We refine a recently proposed class of local entropic loss functions by restricting the smoothening regularization to only a subset of weights. The new loss functions are referred to as partial local entropies. They can adapt to the weight-space anisotropy, thus outperforming their isotropic counterparts. We support the theoretical analysis with experiments on image classification tasks performed with multilayer, fully connected, and convolutional neural networks. The present study suggests how to better exploit the anisotropic nature of deep landscapes, and it provides direct probes of the shape of the minima encountered by stochastic gradient descent algorithms. As a byproduct, we observe an asymptotic dynamical regime at late training times where the temperature of all the layers obeys a common cooling behavior.

2.
Phys Rev Lett ; 123(21): 211602, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809185

RESUMO

In this Letter, we uncover a universal relaxation mechanism of pinned density waves, combining gauge-gravity duality and effective field theory techniques. Upon breaking translations spontaneously, new gapless collective modes emerge, the Nambu-Goldstone bosons of broken translations. When translations are also weakly broken (e.g., by disorder or lattice effects), these phonons are pinned with a mass m and damped at a rate Ω, which we explicitly compute. This contribution to Ω is distinct from that of topological defects. We show that Ω≃Gm^{2}Ξ, where G is the shear modulus and Ξ is related to a diffusivity of the purely spontaneous state. This result follows from the smallness of the bulk and shear moduli, as would be the case in a phase with fluctuating translational order. At low temperatures, the collective modes relax quickly into the heat current, so that late time transport is dominated by the thermal diffusivity. In this regime, the resistivity in our model is linear in temperature and the ac conductivity displays a significant rearranging of the degrees of freedom, as spectral weight is shifted from an off-axis, pinning peak to a Drude-like peak. These results could shed light on transport properties in cuprate high T_{c} superconductors, where quantum critical behavior and translational order occur over large parts of the phase diagram and transport shows qualitatively similar features.

3.
Phys Rev Lett ; 120(17): 171603, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29756813

RESUMO

In contrast to metals with weak disorder, the resistivity of weakly pinned charge density waves (CDWs) is not controlled by irrelevant processes relaxing momentum. Instead, the leading contribution is governed by incoherent, diffusive processes which do not drag momentum and can be evaluated in the clean limit. We compute analytically the dc resistivity for a family of holographic charge density wave quantum critical phases and discuss its temperature scaling. Depending on the critical exponents, the ground state can be conducting or insulating. We connect our results to dc electrical transport in underdoped cuprate high T_{c} superconductors. We conclude by speculating on the possible relevance of unstable, semilocally critical CDW states to the strange metallic region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...