Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 29(7): 1814-1820, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37460754

RESUMO

Predictive artificial intelligence (AI) systems based on deep learning have been shown to achieve expert-level identification of diseases in multiple medical imaging settings, but can make errors in cases accurately diagnosed by clinicians and vice versa. We developed Complementarity-Driven Deferral to Clinical Workflow (CoDoC), a system that can learn to decide between the opinion of a predictive AI model and a clinical workflow. CoDoC enhances accuracy relative to clinician-only or AI-only baselines in clinical workflows that screen for breast cancer or tuberculosis (TB). For breast cancer screening, compared to double reading with arbitration in a screening program in the UK, CoDoC reduced false positives by 25% at the same false-negative rate, while achieving a 66% reduction in clinician workload. For TB triaging, compared to standalone AI and clinical workflows, CoDoC achieved a 5-15% reduction in false positives at the same false-negative rate for three of five commercially available predictive AI systems. To facilitate the deployment of CoDoC in novel futuristic clinical settings, we present results showing that CoDoC's performance gains are sustained across several axes of variation (imaging modality, clinical setting and predictive AI system) and discuss the limitations of our evaluation and where further validation would be needed. We provide an open-source implementation to encourage further research and application.


Assuntos
Inteligência Artificial , Triagem , Reprodutibilidade dos Testes , Fluxo de Trabalho , Humanos
2.
Nat Biomed Eng ; 7(6): 756-779, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37291435

RESUMO

Machine-learning models for medical tasks can match or surpass the performance of clinical experts. However, in settings differing from those of the training dataset, the performance of a model can deteriorate substantially. Here we report a representation-learning strategy for machine-learning models applied to medical-imaging tasks that mitigates such 'out of distribution' performance problem and that improves model robustness and training efficiency. The strategy, which we named REMEDIS (for 'Robust and Efficient Medical Imaging with Self-supervision'), combines large-scale supervised transfer learning on natural images and intermediate contrastive self-supervised learning on medical images and requires minimal task-specific customization. We show the utility of REMEDIS in a range of diagnostic-imaging tasks covering six imaging domains and 15 test datasets, and by simulating three realistic out-of-distribution scenarios. REMEDIS improved in-distribution diagnostic accuracies up to 11.5% with respect to strong supervised baseline models, and in out-of-distribution settings required only 1-33% of the data for retraining to match the performance of supervised models retrained using all available data. REMEDIS may accelerate the development lifecycle of machine-learning models for medical imaging.


Assuntos
Aprendizado de Máquina , Aprendizado de Máquina Supervisionado , Diagnóstico por Imagem
3.
Med Image Anal ; 75: 102274, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731777

RESUMO

Supervised deep learning models have proven to be highly effective in classification of dermatological conditions. These models rely on the availability of abundant labeled training examples. However, in the real-world, many dermatological conditions are individually too infrequent for per-condition classification with supervised learning. Although individually infrequent, these conditions may collectively be common and therefore are clinically significant in aggregate. To prevent models from generating erroneous outputs on such examples, there remains a considerable unmet need for deep learning systems that can better detect such infrequent conditions. These infrequent 'outlier' conditions are seen very rarely (or not at all) during training. In this paper, we frame this task as an out-of-distribution (OOD) detection problem. We set up a benchmark ensuring that outlier conditions are disjoint between the model training, validation, and test sets. Unlike traditional OOD detection benchmarks where the task is to detect dataset distribution shift, we aim at the more challenging task of detecting subtle differences resulting from a different pathology or condition. We propose a novel hierarchical outlier detection (HOD) loss, which assigns multiple abstention classes corresponding to each training outlier class and jointly performs a coarse classification of inliers vs. outliers, along with fine-grained classification of the individual classes. We demonstrate that the proposed HOD loss based approach outperforms leading methods that leverage outlier data during training. Further, performance is significantly boosted by using recent representation learning methods (BiT, SimCLR, MICLe). Further, we explore ensembling strategies for OOD detection and propose a diverse ensemble selection process for the best result. We also perform a subgroup analysis over conditions of varying risk levels and different skin types to investigate how OOD performance changes over each subgroup and demonstrate the gains of our framework in comparison to baseline. Furthermore, we go beyond traditional performance metrics and introduce a cost matrix for model trust analysis to approximate downstream clinical impact. We use this cost matrix to compare the proposed method against the baseline, thereby making a stronger case for its effectiveness in real-world scenarios.


Assuntos
Dermatologia , Benchmarking , Humanos
4.
Biomed Eng Online ; 16(1): 117, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974212

RESUMO

BACKGROUND: Nowadays, the whole world is being concerned with a major health problem, which is diabetes. A very common symptom of diabetes is the diabetic foot ulcer (DFU). The early detection of such foot complications can protect diabetic patients from any dangerous stages that develop later and may require foot amputation. This work aims at building a mobile thermal imaging system that can be used as an indicator for possible developing ulcers. METHODS: The proposed system consists of a thermal camera connected to a Samsung smart phone, which is used to acquire thermal images. This thermal imaging system has a simulated temperature gradient of more than 2.2 °C, which represents the temperature difference (in the literature) than can indicate a possible development of ulcers. The acquired images are processed and segmented using basic image processing techniques. The analysis and interpretation is conducted using two techniques: Otsu thresholding technique and Point-to-Point mean difference technique. RESULTS: The proposed system was implemented under MATLAB Mobile platform and thermal images were analyzed and interpreted. Four testing images (feet images) were used to test this procedure; one image with any temperature variation to the feet, and three images with skin temperature increased to more than 2.2 °C introduced at different locations. With the two techniques applied during the analysis and interpretation stage, the system was successful in identifying the location of the temperature increase. CONCLUSION: This work successfully implemented a mobile thermal imaging system that includes an automated method to identify possible ulcers in diabetic patients. This may give diabetic patients the ability for a frequent self-check of possible ulcers. Although this work was implemented in simulated conditions, it provides the necessary feasibility to be further developed and tested in a clinical environment.


Assuntos
Pé Diabético/diagnóstico por imagem , Smartphone , Telemedicina , Termografia , Estudos de Viabilidade , Humanos , Processamento de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...